A function f(x) satisfies f(1)=3600 and f(1)+f(2)+.....+f(n)=n2f(n) , for all positive integers n>1 . What is the value of f(9) ?
[CAT 2007]
(1) 120
(2) 80
(3) 240
(4) 200
(5) 100
Solution
In the equation given in the question, if we take
f(n) to one side, question,
f(1)+f(2)+.....+f(n−1)+f(n)=n2f(n)
⇒ f(1)+f(2)+.....+f(n−1)=n2f(n)−f(n)
⇒ f(1)+f(2)+.....+f(n−1)=(n2−1)f(n)-----(a)
In the equation given in the question, if we f(n−1) is the last term, then
f(1)+f(2)+.....+f(n−1)=(n−1)2f(n−1)-----(b)
As LHS is the same in both (a) and (b), we equate the RHS and get the following.
(n2−1)f(n)=(n−1)2f(n−1)
⇒ f(n)=(n+1)(n−1)(n−1)2f(n−1) ⇒ f(n)=n=1(n−1)×f(n−1)
∴ f(2)=31×f(1)
f(3)=42×f(2)=42×31×f(1)
f(4)=53×f(3)=53×42×31×f(1)
The pattern is such that the numerator is the product of all natural numbers from 1 to (n−1) while the denominators are the product of natural numbers from 3 to (n+1)
f(9)=10×9×8×7×6×5×4×38×7×6×5×4×3×2×1×f(1)
⇒ f(9)=10×92×1×3600=80
Answer: (2)80