+91 9600 121 800

Plans

Dashboard

Daily & Speed

Quant

Verbal

DILR

Compete

Free Stuff

calendarBack
Quant

/

Algebra

/

Inequalities

Inequalities

MODULES

bookmarked
Basics of Inequalities
Quadratic Inequalities
Basics of Modulus
Multiple Modulus Functions
Sum or Product is Constant
Max & Min for Range & Substitution
Past Questions

CONCEPTS & CHEATSHEET

Concept Revision Video

SPEED CONCEPTS

Inequalities 1
-/10
Inequalities 2
-/10

PRACTICE

Inequalities : Level 1
Inequalities : Level 2
Inequalities : Level 3
ALL MODULES

CAT 2025 Lesson : Inequalities - Multiple Modulus Functions

bookmarked

Example 9

For what values of xxx is ∣3x+4∣≤∣x−2∣| 3x +4 | \leq | x - 2 |∣3x+4∣≤∣x−2∣?

(1)
[−3,−12] [-3,\dfrac{-1}{2}][−3,2−1​]            

(2)
(−∞,−3]∪[2,∞) (-∞, -3] \cup [ 2, ∞)(−∞,−3]∪[2,∞)            

(3)
(−∞,−12] (-∞, \dfrac{-1}{2}](−∞,2−1​]            

(4)
[−43,−12] [\dfrac{-4}{3}, \dfrac{-1}{2}][3−4​,2−1​]

Solution

The deflection points for linear modulus functions can be ascertained by equating them to 0.

When 3x+4=03x + 4 = 03x+4=0 ⇒ x=−43 \bm{x = - \dfrac{4}{3}}x=−34​ and when x−2=0 x - 2 =0 x−2=0 ⇒ x=2\bm{ x = 2}x=2

These are deflection points for these lines.

Condition Expansion of modulus Acceptable Range
x≥2 x \geq 2x≥2 3x+4≤x−2 3x +4 \leq x - 2 3x+4≤x−2
⇒
x≤−3\bm{x \leq - 3}x≤−3
None
−43≤x<2\dfrac{-4}{3} \leq x \lt 2 3−4​≤x<2 3x+4≤−(x−2) 3x +4 \leq -(x - 2) 3x+4≤−(x−2)
⇒
4x≤−24x \leq - 24x≤−2
⇒
x≤−12\bm{x \leq \dfrac{-1}{2}}x≤2−1​
−43≤x≤−12\dfrac{-4}{3} \leq x \leq \dfrac{-1}{2}3−4​≤x≤2−1​
x<−43x \lt \dfrac{-4}{3} x<3−4​ −(3x+4)≤−(x−2) -(3x +4) \leq -(x - 2)−(3x+4)≤−(x−2)
⇒
−2x≤−6-2x \leq - 6−2x≤−6
⇒
x≥−3 \bm{x \geq - 3}x≥−3
−3≤x≤−43 -3 \leq x \leq \dfrac{-4}{3}−3≤x≤3−4​


Combining the two acceptable ranges we get the final acceptable range of −3≤x≤−12 \bm{- 3 \leq x \leq \dfrac{-1}{2}}−3≤x≤2−1​

Answer: (1)[−3,−12] (1) \left[- 3, \dfrac{-1}{2}\right](1)[−3,2−1​]


Example 10

How many values of xxx satisfy ∣2x−1∣+∣x−3∣=8| 2x - 1| + | x - 3| = 8∣2x−1∣+∣x−3∣=8?

Solution

The deflection points to determine the sign when the modulus is removed are ascertained by equating each linear function in the modulus to 0.
The deflection points for ∣2x−1∣+∣x−3∣=8| 2x - 1| + | x - 3| = 8∣2x−1∣+∣x−3∣=8 are at x=12x = \dfrac{1}{2}x=21​ and x=3 x = 3x=3

Condition Expansion of modulus Acceptable Range
x≥3 x \geq 3x≥3 2x−1+x−3=8 2x -1 + x - 3 = 82x−1+x−3=8
⇒
x=4\bm{x =4}x=4
Accepted
12≤x<3\dfrac{1}{2} \leq x \lt 3 21​≤x<3 2x−1−(x−3)=8 2x -1 - (x - 3)=82x−1−(x−3)=8
⇒
x=6\bm{ x = 6}x=6
Rejected (not in range)
x<12x \lt \dfrac{1}{2} x<21​ −(2x−1)−(x−3)=8 -(2x - 1) - (x - 3) = 8−(2x−1)−(x−3)=8
⇒
x=−43 \bm{x = \dfrac{-4}{3}} x=3−4​
Accepted

∴ This equation has 2 solutions.

Answer:
222


Example 11

For what values of xxx is ∣x+1∣+∣2−x∣+∣x+3∣≤x+8| x + 1 | + | 2 - x | + | x + 3 | \leq x + 8∣x+1∣+∣2−x∣+∣x+3∣≤x+8?

Solution

We first rewrite ∣2−x∣| 2 - x|∣2−x∣ as ∣x−2∣| x - 2|∣x−2∣ so that we get a positive result for x>2x \gt 2x>2.
⇒
∣x+1∣+∣x−2∣+∣x+3∣≤x+8| x + 1| + | x - 2 | + | x + 3 | \leq x + 8 ∣x+1∣+∣x−2∣+∣x+3∣≤x+8

Deflection points are
x=−3,−1x = -3, -1x=−3,−1 and 222. Rewriting the terms in the ascending order of thier deflection values,

⇒
∣x+3∣+∣x+1∣+∣x−2∣≤x+8| x + 3| + | x + 1 | + | x - 2 | \leq x + 8 ∣x+3∣+∣x+1∣+∣x−2∣≤x+8

Condition Expansion of modulus Acceptable Range
x≥2 x \geq 2x≥2 x+3+x+1+x−2≤x+8 x + 3 + x + 1 + x - 2 \leq x+8 x+3+x+1+x−2≤x+8
⇒
2x≤62x \leq 62x≤6
⇒ x≤3\bm{x \leq 3}x≤3
2≤x≤32 \leq x \leq 32≤x≤3
−1≤x<2- 1 \leq x \lt 2 −1≤x<2 x+3+x+1−(x−2)≤x+8 x + 3 +x + 1 - (x - 2)\leq x + 8x+3+x+1−(x−2)≤x+8
⇒
6≤8\bm{6 \leq 8}6≤8
This is always true
−1≤x<2-1 \leq x \lt 2−1≤x<2
−3≤x<−1- 3 \leq x \lt - 1−3≤x<−1 x+3−(x+1)−(x−2)≤x+8 x + 3 - (x + 1) - (x - 2) \leq x+8 x+3−(x+1)−(x−2)≤x+8
⇒
−2x≤4-2x \leq 4−2x≤4
⇒ x≥−2\bm{x \geq -2}x≥−2
−2≤x<−1-2 \leq x \lt -1−2≤x<−1
x<−3x \lt - 3x<−3 −(x+3)−(x+1)−(x−2)≤x+8 -(x + 3) - (x + 1) - (x - 2) \leq x + 8−(x+3)−(x+1)−(x−2)≤x+8
⇒
−4x<10- 4x \lt 10 −4x<10
⇒
x>−2.5\bm{x \gt - 2.5}x>−2.5
None

Combining the acceptable ranges we get
−2≤x≤3 - 2 \leq x \leq 3 −2≤x≤3

Answer:
−2≤x≤3 - 2 \leq x \leq 3−2≤x≤3


Example 12

What is the minimum value of f(x)f(x)f(x), wheref(x) f(x) f(x)= ∣x−5∣+∣x+6∣+∣x−3∣| x - 5 | + | x + 6 | + | x - 3 | ∣x−5∣+∣x+6∣+∣x−3∣?

Solution

As this is a sum of modulus functions with linear expression, the minimum value will be at one of the deflection points, i.e., when one of the modulus function equals 0.

The deflection points are x=5,−6 x = 5, -6x=5,−6 and 333.

f(5)f(5)f(5) === 0+11+2=13 0 + 11 +2 = 130+11+2=13

f(−6)f(-6)f(−6) === 11+0+9=20 11 + 0 + 9 = 2011+0+9=20

f(3)f(3)f(3) === 2+9+0=11 2 + 9 + 0 = 112+9+0=11

∴ Minimum value of
f(x)=11f(x) = 11f(x)=11

Answer:
111111


Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock