+91 9600 121 800

Plans

Dashboard

Daily & Speed

Quant

Verbal

DILR

Compete

Free Stuff

calendarBack
Quant

/

Algebra

/

Inequalities

Inequalities

MODULES

bookmarked
Basics of Inequalities
Quadratic Inequalities
Basics of Modulus
Multiple Modulus Functions
Modulus on a Number Line
Sum or Product is Constant
Max & Min for Range & Substitution
Past Questions
concepts-cheatsheet-1660549090

SPEED CONCEPTS

Inequalities 1
-/10
Inequalities 2
-/10

PRACTICE

Inequalities : Level 1
Inequalities : Level 2
Inequalities : Level 3
ALL MODULES

CAT 2025 Lesson : Inequalities - Quadratic Inequalities

bookmarked

4. Quadratic & Higher Order Inequalities

The following steps help solve higher order inequalities

1) Move all terms to the Left Hand Side (LHS) of the inequality, so that the Right Hand Side (RHS) equals 0.

2) Factorise the expression on the LHS.

3) Ensure the coefficient of
x x x in every factor is positive. Else, multiply the factor by -1 and change the sign.

4) Equating each factor to 0 will provide the deflection values of
x x x. Plot these on a number line.

5) The region to the right of the right-most deflection point will be positive. The signs of prior regions (between deflection points) will be alternating between positive and negative.

6) Choose the ranges that satisfy the inequality.

Example 3

What values of xxx satisfy 3x2+8>10x 3x^2 + 8 \gt 10x 3x2+8>10x?

(1) (-
∞\infty∞, 4/3)             
(2) (2,
∞\infty∞)              
(3) (4/3, 2)            
(4) Both (1) and (2)

Solution

3x2−10x+8>03x^2 -10x +8 \gt 03x2−10x+8>0

⇒
3x2−6x−4x+8>03x^2 -6x -4x +8 \gt 03x2−6x−4x+8>0

⇒
3x(x−2)−4(x−2)>03x(x-2) -4(x-2) \gt 03x(x−2)−4(x−2)>0

⇒
(3x−4)(x−2)>0(3x-4) (x-2) \gt 0(3x−4)(x−2)>0

Deflection points are
3x−4=03x - 4 = 03x−4=0 ⇒ x=43 \bm{x = \dfrac{4}{3}}x=34​ and x−2=0x - 2 = 0x−2=0 ⇒ x=2 \bm{x = 2}x=2

Marking the deflection points on a number line, the region in the right-most will be positive. The sign for the preceding regions will alternate between positive and negative.



For (3x−4)(x−2)>0,(3x - 4)(x - 2) \gt 0,(3x−4)(x−2)>0, the LHS should be positive
∴ Acceptable values of
xxx are when x<43x \lt \dfrac{4}{3}x<34​ or when x>2x \gt 2x>2

Answer:(
444) Both (1) and (2)

Example 4

What are the acceptable values for xxx where x+5x−1<2 \dfrac {x+5}{x-1} \lt 2 x−1x+5​<2?

Solution

To solve for an inequality, we need to have 0 on the RHS.

x+5x−1<2 \dfrac{x+5}{x-1} \lt 2 x−1x+5​<2 ⇒ x+5x−1− \dfrac{x+5}{x-1} - x−1x+5​−2<0 \lt 0<0 ⇒ −x+7x−1<0 \dfrac{-x+7}{x-1} \lt 0x−1−x+7​<0

As the coefficient of
xxx should be +ve in all factors, we shall multiply LHS and RHS by –1.

x−7x−1>0 \dfrac{x-7}{x-1} \gt 0 x−1x−7​>0------(1)

It does not matter if the linear terms (or factorized terms) are multiplied or divided, the treatment is the same in an inequality. We find the deflection points for each term. Deflection points are at
x=1,7x = 1, 7x=1,7.



The LHS in (1) needs to be positive. This happens when
x<1x < 1x<1 or x>7x > 7x>7.

Answer:
x<1x < 1x<1 or x>7x > 7x>7


Example 5

What values of xxx satisfy 2x3−x2−7x+6<0 2x^3-x^2-7x+6 \lt 0 2x3−x2−7x+6<0?
(111) (−∞,1)(-∞ ,1)(−∞,1)       
(
222) (−2,1)(-2,1)(−2,1)       
(
333) (−2,1)∪(32,∞)(-2,1) ∪ (\dfrac{3}{2},∞)(−2,1)∪(23​,∞)       
(
444) (−∞,−2)∪(1,32)(-∞ ,-2) ∪ (1,\dfrac{3}{2}) (−∞,−2)∪(1,23​)      

Solution

Let
f(x)f(x)f(x) = 2x3−x2−7x+6 2x^3-x^2-7x+6 2x3−x2−7x+6

Substituting small integral values in
xxx we get f(1)f(1)f(1) = 2−1−7+62-1-7+62−1−7+6 = 000

Dividing by (
x−1 x-1 x−1), we get (2x2+x−6 2x^2+x-6 2x2+x−6).

∴
f(x)=2x3−x2−7x+6=(x−1)(2x2+x−6)f(x) = 2x^3-x^2-7x+6 = (x-1) (2x^2+x-6)f(x)=2x3−x2−7x+6=(x−1)(2x2+x−6)

=
(x−1)(2x−3)(x+2)(x-1) (2x-3) (x+2)(x−1)(2x−3)(x+2)

2x3−x2−7x+6<02x^3-x^2-7x+6 \lt 02x3−x2−7x+6<0

⇒
(x−1)(2x−3)(x+2)<0(x-1) (2x-3) (x+2) \lt 0(x−1)(2x−3)(x+2)<0



The negative regions
(−∞,−2)(-∞ ,-2)(−∞,−2) and (1,32)(1,\dfrac{3}{2}) (1,23​)

Answer: (
444) (−∞,−2)∪(1,32)(-∞ ,-2) ∪ (1,\dfrac{3}{2}) (−∞,−2)∪(1,23​)


Example 6

What is the range of xxx values that satisfy x2−7x+22x+2>2 \dfrac {x^2 - 7x + 22}{x + 2} \gt 2x+2x2−7x+22​>2?

Solution

x2−7x+22x+2>2 \dfrac {x^2 - 7x + 22}{x + 2} \gt 2x+2x2−7x+22​>2 ⇒ x2−7x+22x+2−2>0 \dfrac {x^2 - 7x + 22}{x + 2} - 2\gt 0x+2x2−7x+22​−2>0

⇒
x2−9x+18x+2>0 \dfrac {x^2-9x+18}{x+2} \gt 0x+2x2−9x+18​>0

⇒
(x−6)(x−3)(x+2)>0 \dfrac {(x-6)(x-3)}{(x+2)} \gt 0(x+2)(x−6)(x−3)​>0



Inequality is positive when
xxx is in the range (−2,3)∪(6,∞)(-2,3) ∪ (6,∞)(−2,3)∪(6,∞).

Answer: (
444) (−2,3)∪(6,∞)(-2,3) ∪ (6,∞) (−2,3)∪(6,∞)


Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock