calendarBack
Quant

/

Algebra

/

Quadratic Equations
ALL MODULES

CAT 2025 Lesson : Quadratic Equations - Infinite Series & Transposed

bookmarked

4.4 Recurring Infinite Series

Example 16

If x=15215215...x = \sqrt{15 - 2 \sqrt{15 - 2 \sqrt{15 - ... \infty}}} and x>0x \gt 0, what is the value of xx?

(1)
33            (2) 3-3            (3) 55            (4) 5-5           

Solution

x=15215215...x = \sqrt{15 - 2 \sqrt{15 - 2 \sqrt{15 - ... \infty}}}
x=152x x = \sqrt{15 - 2x}
x2=152xx^{2} = 15 - 2x
x2+2x15=0x^{2} + 2x - 15 = 0
x=5,3x = -5, 3 (5(-5 is rejected as x>0)x \gt 0)

Answer: (1)
33


Example 17

1+121+121+121+...1 + \dfrac{12}{1 + \dfrac{12}{1 + \dfrac{12}{1 + ...}}}

(1)
44            (2) 3-3            (3) 44 or 3-3            (4) Cannot be determined           

Solution

Let 1+121+121+121+...1 + \dfrac{12}{1 + \dfrac{12}{1 + \dfrac{12}{1 + ...}}}

x=1+12x x = 1 + \dfrac{12}{x}    ⇒    x2=x+12 x^{2} = x + 12

x2x12=0x^{2} - x - 12 = 0

(x4)(x+3)=0 (x - 4) (x + 3) = 0

x=4 x \bm{= 4} [x=3x = -3 is rejected as there is no negative term in the initial expression]

Answer:
(1) 4(1) \space 4


4.5 Interchanged/Transposed

Example 18

For how many integral values of xx is (x+12x1)10(2x1x+1)=3\left(\dfrac{x + 1}{2x - 1} \right) - 10 \left(\dfrac{2x - 1}{x + 1} \right) = -3?

Solution

Let y=x+12x1y = \dfrac{x + 1}{2x - 1}

(x+12x1)10(2x1x+1)=3\left(\dfrac{x + 1}{2x - 1} \right) - 10 \left(\dfrac{2x - 1}{x + 1} \right) = -3    ⇒    y10y=3 y - \dfrac{10}{y} = -3

y2+3y10=0y^{2} + 3y - 10 = 0    ⇒    (y+5)(y2)=0 (y + 5) (y - 2) = 0    ⇒    y=2,5 y = 2, -5

Substituting the value of
yy,
If
x+12x1=2\dfrac{x + 1}{2x - 1} = 2    ⇒    x+1=4x2 x + 1 = 4x - 2

x=1 x = 1 (Integral solution)

If
x+12x1=5\dfrac{x + 1}{2x - 1} = -5    ⇒    x+1=10x+5 x + 1 = -10x + 5

x=411 x = \dfrac{4}{11} (Non-integral solution)

∴ There is only
11 integral solution for xx.

Answer:
11


Example 19

How many distinct real values of xx satisfy 3(x2+1x2)16(x+1x)+26=03 \left(x^{2} + \dfrac{1}{x^{2}} \right) - 16 \left(x + \dfrac{1}{x} \right) + 26 = 0?

Solution

(x+1x)2=x2+1x2+2\left(x + \dfrac{1}{x} \right)^{2} = x^{2} + \dfrac{1}{x^{2}} + 2    ⇒    x2+1x2=(x+1x)22 x^{2} + \dfrac{1}{x^{2}} = \left(x + \dfrac{1}{x} \right)^{2} - 2

Let
(x+1x)=y\left(x + \dfrac{1}{x} \right) = y

3(x2+1x2)16(x+1x)+26=03 \left(x^{2} + \dfrac{1}{x^{2}} \right) - 16 \left(x + \dfrac{1}{x} \right) + 26 = 0    ⇒    3(y22)16y+26=0 3(y^{2} - 2) - 16y + 26 = 0

3y216y+20=0 3y^{2} - 16y + 20 = 0

y=103,2y = \dfrac{10}{3}, 2

Substituting each of these values,
(x+1x)=103\left(x + \dfrac{1}{x} \right) = \dfrac{10}{3}    ⇒    3x210x+3=0 3x^{2} - 10x + 3 = 0    ⇒    x=3,13 x = \bm{3, \dfrac{1}{3}}

(x+1x)=2\left(x + \dfrac{1}{x} \right) = 2    ⇒    x22x+1=0 x^{2} - 2x + 1 = 0    ⇒    x=1 x = \bm{1}

Answer:
33 values


Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock