calendarBack
Quant

/

Modern Maths

/

Class Discussion: Modern Maths
ALL MODULES

CAT 2025 Lesson : Class Discussion: Modern Maths - Progressions: 9 to 16

bookmarked

Question 9

How many integral Arithmetic Progressions with at least 3 elements exist such that the first and last terms are 17 and 101 respectively?

Answer:

Question 10

Consider the set of numbers {1, 3, 32,33,.....,31003^2, 3^3,.....,3^{100}}. The ratio of the last number and the sum of the remaining numbers is closest to:
[XAT 2016]

1
2
3
50
99

Question 11

The 288th term of the series a,b,b,c,c,c,d,d,d,d,e,e,e,e,e,f,f,f,f,f,f...a, b, b, c, c, c, d, d, d, d, e, e, e, e, e, f, f, f, f, f, f ... is
[CAT 2003 First Paper]

uu
vv
ww
xx

Question 12

12+34+58+716+\dfrac{1}{2} + \dfrac{3}{4} + \dfrac{5}{8} + \dfrac{7}{16}+ … =?

Answer:

Question 13

17+572+1473+3074+5575\dfrac{1}{7} + \dfrac{5}{7^2} + \dfrac{14}{7^3} + \dfrac{30}{7^4}+ \dfrac{55}{7^5} … =

41108\dfrac{41}{108}
49162\dfrac{49}{162}
107324\dfrac{107}{324}
247648\dfrac{247}{648}
99

Question 14

1 + (1 + 5) + (1 + 5 + 9) + …. + (1 + 5 + 9 + … + 77) = ?

Answer:

Question 15

(1×200)+(2×199)+(3×198)++(100×101)(1 \times 200) + (2 \times 199) + (3 \times 198) + … + (100 \times 101) =?

Answer:

Question 16

13×8+18×13+113×18++198×103\dfrac{1}{3 \times 8} + \dfrac{1}{8 \times 13} + \dfrac{1}{13 \times 18} + … + \dfrac{1}{98 \times 103}= ?

7103\dfrac{7}{103}
35103\dfrac{35}{103}
20309\dfrac{20}{309}
100309\dfrac{100}{309}

Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock