+91 9600 121 800

Plans

Dashboard

Daily & Speed

Quant

Verbal

DILR

Compete

Free Stuff

calendarBack
Quant

/

Numbers

/

Divisibility

Divisibility

MODULES

bookmarked
Divisibility - 2, 5, 10
bookmarked
Divisibility - 3, 9, 11
bookmarked
7, 13 and Composite
bookmarked
Divisibility of Factorial
bookmarked
Last Digit
bookmarked
Last 2 Digits
bookmarked
Past Questions

CONCEPTS & CHEATSHEET

Concept Revision Video

SPEED CONCEPTS

Divisibility 1
-/10
Divisibility 2
-/10

PRACTICE

Divisibility : Level 1
Divisibility : Level 2
Divisibility : Level 3
ALL MODULES

CAT 2025 Lesson : Divisibility - Last 2 Digits

bookmarked

4.2 Last two digits

Questions around last two digits are less common in entrance tests. However, the concept is quite simple and easy to learn. The cases below are for finding the last two digits of a number
xnx^nxn where xxx and nnn are integers.

4.2.1 x is a multiple of 5\bm{5}5

Where
n>1n > 1n>1, last digit of xxx is 555 and tens digit of x is even, the last two digits of xn=25\bm{x^{n} = 25}xn=25.

Where
n>1n > 1n>1, last digit of xxx is 555 and tens digit of x is odd,
1) the last two digits of
xn=25x^{n} = 25xn=25, where nnn is even; and
2) the last two digits of
xn=75x^{n} = 75xn=75, where nnn is odd.

4.2.2 x is a multiple of 10\bm{10}10

Where
n>1n > 1n>1 and last digit of xxx is 000, the last two digits of xn=00.\bm{x^n = 00}.xn=00.

4.2.3 x is a multiple of 2\bm{2}2 but not 4\bm{4}4

Where
kkk is an integer, last two digits of x40k+1 =\bm{x^{40k +1}} \space =x40k+1 = last two digits of x+50\bm{x + 50}x+50.

We, therefore, split the powers and then individually multiply, as shown in the example below:

Example 18

What are the last two digits of 8628386^{283}86283?

Solution

868686 is a multiple of 222 but not 444.

∴
T(86281)=T(8640×7+1)=T(86+50)=36T(86^{281}) = T(86^{40 \times 7 + 1}) = T(86 + 50) = 36T(86281)=T(8640×7+1)=T(86+50)=36

T(86283)=T(86281×862)=T(36×96)=T(3456)=56T(86^{283}) = T(86^{281} \times 86^{2}) = T(36 \times 96) = T(3456) = \bm{56}T(86283)=T(86281×862)=T(36×96)=T(3456)=56

Answer:
565656

4.2.4 x is a multiple of 4\bm{4}4

Where
kkk is an integer, last two digits of x40k+1=\bm{x^{40k + 1}} =x40k+1= last two digits of x\bm{x}x.

Example 19

What are the last two digits of 201620162016^{2016}20162016?

Solution

We need to find T(162016)T(16^{2016})T(162016).

161616 is a multiple of 444.

∴
T(1640×50+1)=T(162001)=16T(16^{40 \times 50 + 1}) = T(16^{2001}) = 16T(1640×50+1)=T(162001)=16

T(162016)=T(162001×1615)=T(16×1615)=T(1616)T(16^{2016}) = T(16^{2001} \times 16^{15}) = T(16 \times 16^{15}) = \bm{T(16^{16})}T(162016)=T(162001×1615)=T(16×1615)=T(1616)

After this, we normally multiply the numbers to find the last two digits.

T(162)=56T(16^2) = 56T(162)=56

T(164)=T(562)=36T(16^4) = T(56^2) = 36T(164)=T(562)=36

T(163)=T(362)=96T(16^3) = T(36^2) = 96T(163)=T(362)=96

T(1616)=T(962)=16T(16^{16}) = T(96^2) = 16T(1616)=T(962)=16

Answer:
161616

4.2.5 x is an odd number other than 5\bm{5}5

When the units digit of a number is
111, then there is a cyclicity in the tens digit. Using this pattern, where the last digit of xxx is 111, 333, 777 or 999,

111) Raise xxx to a power such that the units digit becomes 111.
222) The units digit of the resulting number raised to any power will always be 111.
333) The tens digit of this number is the product of the tens digit of the base and the units digit of the power.
From steps
222 and 333, if x=7‾1486‾x = \bm{\underline{7}1^{48\underline{6}}}x=7​1486​
Units digit of
x=1x = 1x=1 Tens digit of x=U(7×6)=2x = U(7 \times 6) = 2x=U(7×6)=2
Last
222 digits of 71486=2171^{486} = 2171486=21

Example 20

What are the last two digits of 63792637^{92}63792?.

Solution

T(63792)=T((372)46)T(637^{92}) = T \left((37^{2})^{46} \right)T(63792)=T((372)46)

=T(6946)=T((692)23)=T(6123)= T(69^{46}) = T\left((69^{2})^{23} \right) = T(61^{23})=T(6946)=T((692)23)=T(6123)

Units digit of
6123=161^{23} = 16123=1
Tens digit of
6123=U(6×3)=861^{23} = U(6 \times 3) = 86123=U(6×3)=8

∴
T(6123)=81T(61^{23}) = \bm{81} T(6123)=81

Answer:
818181
Loading...Loading Video....