calendarBack
Quant

/

Numbers

/

Factors & Remainders
ALL MODULES

CAT 2025 Lesson : Factors & Remainders - Operations on Remainders

bookmarked

3.5 Sum of Remainders

Rule: Remainder of Sum of numbers
== Sum of remainders when each of the numbers is divided by the divisor.

When
n=a1+a2+a3+...,n = a_1 + a_2 + a_3 + ...,

Rem(nd)=Rem(a1+a2+a3+...d)=Rem(a1d)+Rem(a2d)+Rem(a3d)+...\mathrm{Rem} \left(\dfrac{n}{d}\right) = \mathrm{Rem} \left(\dfrac{a_{1} + a_{2} + a_{3} +...}{d}\right) = \mathrm{Rem} \left(\dfrac{a_{1}}{d}\right) + \mathrm{Rem} \left(\dfrac{a_{2}}{d}\right) + \mathrm{Rem} \left(\dfrac{a_{3}}{d}\right) + ...

If the sum of remainders is greater than
dd, this is once again divided by dd to ascertain the final remainder.

Example 19

What is the remainder when (3486+43975+245)(3486 + 43975 + 245) is divided by 44?

Solution

Rem(3486+43975+2454)=Rem(34864)+Rem(439754)+Rem(2454)\mathrm{Rem} \left(\dfrac{3486 + 43975 + 245}{4}\right) = \mathrm{Rem} \left(\dfrac{3486}{4}\right) + \mathrm{Rem} \left(\dfrac{43975}{4}\right) + \mathrm{Rem} \left(\dfrac{245}{4}\right)

=Rem(2+3+14)=2= \mathrm{Rem} \left( \dfrac{2 + 3 + 1}{4} \right) = 2

Answer:
22

Note: To find the remainder when a number is divided by
44, we divide the number's last 22 digits by 44. This concept will be explained in greater detail in the Divisibility Lesson.

3.6 Product of Remainders

Rule: Remainder of the product of numbers
== Product of remainders when each of the numbers is divided by the divisor.

When
n=a1×a2×a3×... n = a_1 \times a_2 \times a_3 \times ...,
Rem(nd)=Rem(a1×a2×a3×...d)=Rem(a1d)×Rem(a2d)×Rem(a3d)×... \mathrm{Rem} \left( \dfrac{n}{d} \right) = \mathrm{Rem} \left( \dfrac{a_1 \times a_2 \times a_3 \times...}{d} \right) = \mathrm{Rem} \left( \dfrac{a_1}{d} \right) \times \mathrm{Rem} \left( \dfrac{a_2}{d} \right) \times \mathrm{Rem} \left( \dfrac{a_3}{d} \right) \times ...

Explanation: Let's say there are three numbers
a1a_1, a2a_2 and a3a_3. The remainders obtained when each of a1a_1, a2a_2 and a3a_3 is divided by divisor dd, are r1r_1, r2r_2 and r3r_3 respectively. And, the quotients are q1q_1, q2q_2 and q3q _3 respectively.

a1=dq1+r1 a_1 = dq_1 + r_1 ; a2=dq2+r2 a_2 = dq_2 + r_2; a3=dq3+r3a_3 = dq_3 + r_3

Rem(a1×a2×a3d)=Rem((dq1+r1)(dq2+r2)(dq3+r3)d)\mathrm{Rem} \left( \dfrac{a_1 \times a_2 \times a_3}{d} \right) = \mathrm{Rem} \left( \dfrac{(dq_1 + r_1)(dq_2 + r_2)(dq_3 + r_3) }{d} \right)

In the expansion, all the terms in the numerator is a multiple of
dd, but for the last term, which is r1×r2×r3r_1 \times r_2 \times r_3.

\therefore Rem(a1×a2×a3d)=Rem(r1×r2×r3d)\mathrm{Rem} \left(\dfrac{a_1 \times a_2 \times a_3 }{d}\right) = \mathrm{Rem} \left(\dfrac{r_1 \times r_2 \times r_3}{d}\right)

Example 20

What is the remainder when 235×237×239235 \times 237 \times 239 is divided by 99?

Solution

The closest multiple of 99 for the three numbers is 234234.

Rem(235×237×2399)=Rem((234+1)×(234+3)×(234+5)9)=Rem(1×3×59)=6\mathrm{Rem} \left(\dfrac{235 \times 237 \times 239}{9}\right) = \mathrm{Rem} \left(\dfrac{(234 + 1) \times (234 + 3) \times (234 + 5)}{9}\right) = \mathrm{Rem} \left(\dfrac{1 \times 3 \times 5}{9}\right) = 6

Answer:
66

3.7 Remainder of Exponents

(a+b)n=nc0anb0+nc1an1b1+...+(a + b)^n = ^{n}{c_0 a^n b^0} + ^{n}{c_1 a^{n - 1} b^1} + ... + ncn1a1bn1+^{n}{c_{n-1} a^1 b^{n - 1}} + ncna0bn^{n}{c_n a^0 b^n}

Let's say a number
aa when divided by dd, results in a quotient of qq and remainder of rr.
a=dq+ra = dq + r

Rem(and)=Rem((dq+r)nd)\mathrm{Rem} \left(\dfrac{a^n}{d}\right) = \mathrm{Rem} \left(\dfrac{(dq + r)^n}{d}\right)

=Rem(nc0(dq)nr0+nc1(dq)n1r1+....+ncn1(dq)1rn1+ncn(dq)0rnd)= \mathrm{Rem} \left(\dfrac{^{n}c_0(dq)^n r^0 + ^{n}c_1(dq)^{n - 1}r^1 + .... + ^{n}c_{n - 1}(dq)^1 r^{n - 1} + ^{n}c_n (dq)^0 r^n}{d}\right)

All terms are divisible by
dd except for the last term.

\therefore Rem((dq+r)nd)=Rem(rnd)\mathrm{Rem} \left(\dfrac{(dq + r)^n}{d}\right) = \mathrm{Rem} \left(\dfrac{r^n}{d}\right)

Example 21

What is the remainder when 7079570^{795} is divided by 2323?

Solution

6969 is a multiple of 2323.

\therefore Rem(7079523)=Rem((69+1)79523)=Rem(179523)=1\mathrm{Rem} \left(\dfrac{70^{795}}{23}\right) = \mathrm{Rem} \left(\dfrac{(69 + 1)^{795}}{23}\right) = \mathrm{Rem} \left(\dfrac{ 1^{795}}{23}\right) = 1

Answer:
11

The following example uses a combination of the rules.

Example 22

What is the remainder when 1512515^{125} is divided by 88?

Solution

1616 is a multiple of 88.

\therefore Rem(151258)=Rem((161)1258)\mathrm{Rem} \left(\dfrac{15^{125}}{8}\right) = \mathrm{Rem} \left(\dfrac{(16 - 1)^{125}}{8}\right)

=
Rem((1)1258)=Rem((1+8)8)=7\mathrm{Rem} \left(\dfrac{(- 1)^{125}}{8}\right) = \mathrm{Rem} \left(\dfrac{(- 1 + 8)}{8}\right) = 7


Answer:
77

Note: Adding or subtracting the divisor will not change the remainder. Therefore, while applying the rules if we get a negative value (like in this example), we can add a multiple of the divisor to arrive at the remainder.

Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock