+91 9600 121 800

Plans

Dashboard

Daily & Speed

Quant

Verbal

DILR

Compete

Free Stuff

calendarBack
Quant

/

Algebra

/

Functions

Functions

MODULES

bookmarked
Relations & Functions
bookmarked
Domain, Codomain & Range
bookmarked
Basics of Functions
bookmarked
Quadratic & Log
bookmarked
Minimum & Maximum
bookmarked
Box & Composite Functions
bookmarked
Sequences & Patterns
bookmarked
Piecewise & Non-Standard Input
Past Questions

CONCEPTS & CHEATSHEET

Concept Revision Video

SPEED CONCEPTS

Functions 1
-/10
Functions 2
-/10

PRACTICE

Functions : Level 1
Functions : Level 2
Functions : Level 3
ALL MODULES

CAT 2025 Lesson : Functions - Box & Composite Functions

bookmarked

6.Special Types of Functions

6.1 Greatest/Smallest Integer Functions

These are also called step functions as they look like steps when graphically plotted.

Greatest integer function of xxx, also denoted as [x]\bm{[x]}[x], returns the greatest integer less than or equal to xxx.

For instance,
[1] = 1 , [1.2] =1 , [1.99] = 1,[2] = 2[1] \space = \space 1 \space , \space [1.2] \space = 1 \space , \space [1.99] \space = \space 1, [2] \space = \space 2[1] = 1 , [1.2] =1 , [1.99] = 1,[2] = 2

This is also called a floor function.
Least integer function of xxx, returns the least integer greater than or equal to xxx.

For instance, LIF(
111) = 1 , = \space 1 \space , \space= 1 ,  LIF(1.21.21.2) = 2 ,  \space =\space 2 \space , \space = 2 ,  LIF(1.991.991.99)  = 2\space = \space 2 = 2,
LIF(
222)  = 2\space = \space 2 = 2

This is also called a ceiling function.

Example 12

If [X] denotes the greatest integer less than or equal to X, then

[13]+[13+199]+[13+299]+[13+9899]=\left[ \dfrac{1}{3} \right] + \left[ \dfrac{1}{3} + \dfrac{1}{99} \right] + \left[ \dfrac{1}{3} + \dfrac{2}{99} \right] + \left[ \dfrac{1}{3} + \dfrac{98}{99} \right] =[31​]+[31​+991​]+[31​+992​]+[31​+9998​]=
[XAT 2008]

(
111)33      (222)34      (333)66      (444)67      (555)98

Solution

[13+099]=0\left[ \dfrac{1}{3} + \dfrac{0}{99} \right] = 0[31​+990​]=0, [13+199]=0\left[ \dfrac{1}{3} + \dfrac{1}{99}\right] = 0[31​+991​]=0 and so on till [13+6599]\left[ \dfrac{1}{3} + \dfrac{65}{99} \right][31​+9965​]

From
[13+6699]=1\left[ \dfrac{1}{3} + \dfrac{66}{99} \right] = 1[31​+9966​]=1 onwards, all the terms equal 111.

Between
666666 and 989898 (both inclusive), there are total of 98−66+1=3398 - 66 + 1 = 3398−66+1=33 terms, each of whose value is 111.

∴\therefore∴ Total of these 333333 terms is 333333.

Answer: (1)
333333

6.2 Nested & Composite Functions

In nested functions, we will given a function
f(x)f(x)f(x) and asked to find f(f(x))f(f(x))f(f(x)). This is a function within a function.

In composite functions, we will be given
222 or more functions, say f(x)f(x)f(x) and g(x)g(x)g(x). We will then be asked to find f(g(x))f(g(x))f(g(x)), etc.

Example 13

If f(x)=x2,g(x)=10−xf(x) = x^2, g(x) = 10 - xf(x)=x2,g(x)=10−x and h(x)=10xh(x) = \dfrac{10}{x}h(x)=x10​, then

(I) What is
f(g(x))?f(g(x))?f(g(x))?
(II) What is
g(g(x))?g(g(x))?g(g(x))?
(III) What is
h(g(f(x)))h(g(f(x)))h(g(f(x)))?

Solution

Case I: f(g(x))=f(10−x)f(g(x)) = f(10 - x)f(g(x))=f(10−x)

=(10−x)2= (10 - x)^2=(10−x)2 =100−20x+x2= \bm{100 - 20x + x^2}=100−20x+x2

Case II:
g(g(x))=g(10−x)g(g(x)) = g(10 - x)g(g(x))=g(10−x)

=10−(10−x)= 10 - (10 - x)=10−(10−x) =x=x=x

Case III:
h(g(f(x)))=h(g(x2))h(g(f(x))) = h(g(x^2))h(g(f(x)))=h(g(x2)) =h(10−x2)= h(10 - x^2)=h(10−x2)

=1010−x2\bm{= \dfrac{10}{10 - x^2}}=10−x210​


Loading...Loading Video....