calendarBack
Quant

/

Algebra

/

Functions
ALL MODULES

CAT 2025 Lesson : Functions - Piecewise & Non-Standard Input

bookmarked

6.6 Piecewise Functions

In these type of questions, function provides different outputs for different ranges of inputs. A good way to solve these is to form a table and/or assume values across different ranges.

Example 18 & 19

f1(x)=xf_1(x) = x, if 0x10 \le x \le 1 f2(x)=f1(x)f_2(x) = f_1( - x) for all xx
              =1= 1, if x1x \ge 1 f3(x)=f2(x)f_3(x) = - f_2(x) for all xx
               =0= 0 otherwise f4=f3(x)f_4 = f_3( - x) for all xx
[CAT 2004]

How many of the following products are necessarily zero for every
xf4(x)f2(x),f2(x)f3(x),f2(x)f4(x)x - f_4(x)f_2(x), f_2(x)f_3(x), f_2(x)f_4(x)?

(
11) 0               (22) 1               (33) 2               (44) 3

Solution

As f1(x)f_1(x) is a piecewise function with 33 different outputs across 33 different ranges, we shall form a table with the 33 ranges in the columns and take 33 reference values for each range.

Note: If a positive and negative values are to be taken, avoid taking values such as
+2+2 and 2-2 wherein each values' modulus give the same result. The of -22, 0.50.5 and 33 that have been used are quite distinct.

x<0\bm{x \lt 0} 0x1 \bm{ 0 \leq x \leq 1} x>1\bm{x \gt 1}
Reference Value x=2x = -2 x=0.5x = 0.5 x=3x = 3
f1(x)f_1(x) 0 0 1 1 3 3
f2(x)=f1(x)f_2(x) = f_1(-x) 2 2 0 0 0 0
f3(x)=f2(x)f_3(x) = -f_2(x) 2 -2 0 0 0 0
f4(x)=f3(x)=f2(x)=f1(x)f_4(x) = f_3(-x) = -f_2(-x) = -f_1(x) 0 0 1 -1 3 -3


f2(x)f3(x)f_2(x)f_3(x) at x=2x = -2 , provides a value of 2×2=4 2 \times - 2 = -4

f1(x)f2(x)f_1(x)f_2(x) and f2(x)f4(x)f_2(x)f_4(x) across the 33 ranges is always 00. Therefore, 2\bm{2} of the products are always 00.

Answer: (
33) 22

1919) Which of the following is necessarily true?

(
11) f4(x)=f1(x)f_4(x) = f_1(x) for all xx         (22) f1(x)=f3(x)f_1(x) = -f_3(-x) for all xx
(
33) f2(x)=f4(x)f_2(-x) = f_4(x) for all xx         (44) f1(x)+f3(x)=0f_1(x) + f_3(x) = 0 for all xx

Option (1) is not true at
x=0.5x = 0.5 and x=3x = 3.

Option (2):
f3(x)=(f2(x))=f2(x)=f1((x))=f1(x)-f_3(-x) = -(-f_2(-x)) = f_2(-x) = f_1(-(-x)) = f_1(x) . This is always true.

Option (3): We note from the table that
f4(x)=f3(x)=f2(x)f_4(x) = f_3(-x) = -f_2(-x) . Therefore, this is also incorrect.

Option (4) is not true for any of the
xx-values.

Answer: (
22) f1(x)=f3(x)f_1(x) = -f_3(-x) for all xx

6.7 Non-standard input for the function

In these questions equate the required input to the function's input, solve for
xx and the substitute the xx-value in the output.

Example 20

If f(2x+3x1)=x+4x2f (\dfrac{2x + 3}{x - 1}) = \dfrac{x +4 }{x - 2 } , then f(5)f(5) = ?

Solution

In these question, we first equate the input term to 55, solve for xx and then substitute xx in the output.

If
(2x+3x1)=5 \left(\dfrac{2x + 3}{ x - 1}\right) = 52x+3=5x52x + 3 = 5x - 5x=83x = \dfrac{8}{3}

The question states
(2x+3x1)=x+4x2 \left(\dfrac{2x +3}{x - 1}\right) = \dfrac{x + 4}{x - 2}

When
x=83x = \dfrac{8}{3}, f(2x+3x1)=f(5)=83+4832=20323f \left(\dfrac{2x + 3}{x - 1}\right) = f(5) = \dfrac{\dfrac{8}{3} + 4}{\dfrac{8}{3} - 2} = \dfrac{\dfrac{20}{3}}{\dfrac{2}{3}}

f(5)=10f(5) = 10

Answer:
1010

Example 21

If 3f(x+2)+4f(1x+2)=4x,x23 f(x + 2) + 4f( \dfrac{1}{x + 2}) = 4x, x \neq - 2 , the f(4)f(4) is
[XAT 2008]

(
11) 77
(
22) 527 \dfrac{52}{7}
(
33) 88
(
44) 567\dfrac{56}{7}
(
55) None of the above

Solution

The 22 functions have non-standard inputs with 11 being the reciprocal of the other. The equation looks like a linear equation with 22 variables. We need to form 22 equations to solve it.

If the first input equals
44, i.e. x+2=4x + 2 = 4x=2x = 2

Substituting
x=2x = 2, we get 3f(4)+4f(14)=83 f(4) + 4f(\dfrac{1}{4}) = 8 -----(a)

If the second input equals
44, i.e. 1x+2=4\dfrac{1}{x + 2} = 4x=74x = - \dfrac{7}{4}

Substituting
xx == 74 - \dfrac{7}{4}, we get 3f(14)+4f(4)=73 f\left(\dfrac{1}{4}\right) + 4f(4) = -7 -----(b)

4×(b)3×(a) 4 \times (b) - 3 \times (a)4f(4)=524f(4) = - 52

f(4)f(4) == - 527\dfrac{52}{7}

Answer: (
55) None of the above

6.8 Substitute and get the answer

In these questions, substitute small integral values for
xx, starting from 11 and find the option that is true.

Example 22

If f(x)=3x+22x3f(x) = \dfrac{3x + 2}{2x - 3}, then which of the following is true?

(
11)f(x)=f(x)f(x) = f(-x)
(
22) f(x)=1f(x)f(x) = \dfrac{-1}{f(-x)}
(
33) x=f(f(x))x = f(f(x))
(
44) f(x)=f(x)f(x) = -f(-x)

Solution

In these questions, substitute values for xx and proceed by eliminating the answer options.

f(1)=3+223=5f(1) = \dfrac{3 + 2}{2 - 3} = -5 and f(1)=3+223=15f(-1) = \dfrac{-3 + 2}{-2 - 3} =\dfrac{1}{5}

As
f(1)f(1)f(1) \neq f(-1) , option (11) is rejected
As
f(1)f(1)f(1) \neq -f(-1) , option (44) is rejected

As
f(1)=1f(1)f(1) = \dfrac{-1}{f(-1)} , we keep option (22) on hold and check if option (33) can be rejected.

f(f(1))=f(5)=15+2103=1f(f(1)) = f(-5) = \dfrac{-15 + 2}{-10 - 3} = 1,

∴ Option (
33) cannot be rejected. We need to substitute a different value, say x=2x = 2 and check for options 22 and 33 alone.

f(2)=8f(2) = 8 and f(2)=47f(-2) = \dfrac{4}{7}

Clearly,
f(2)1f(2)f(2) \neq \dfrac{-1}{f(-2)} and option (22) is rejected. And, the correct answer is option (3\bm{3}).

Note that f(f(2))=f(8)=24+2163=2f(f(2)) = f(8) = \dfrac{24 + 2}{16 - 3} = 2 . So, option (33) is true.

Answer: (
33) x=f(f(x))x = f(f(x))

Loading...Loading Video....