+91 9600 121 800

Plans

Dashboard

Daily & Speed

Quant

Verbal

DILR

Compete

Free Stuff

calendarBack
Quant

/

Algebra

/

Functions

Functions

MODULES

bookmarked
Relations & Functions
bookmarked
Domain, Codomain & Range
bookmarked
Basics of Functions
bookmarked
Quadratic & Log
bookmarked
Minimum & Maximum
bookmarked
Box & Composite Functions
bookmarked
Sequences & Patterns
bookmarked
Piecewise & Non-Standard Input
Past Questions

CONCEPTS & CHEATSHEET

Concept Revision Video

SPEED CONCEPTS

Functions 1
-/10
Functions 2
-/10

PRACTICE

Functions : Level 1
Functions : Level 2
Functions : Level 3
ALL MODULES

CAT 2025 Lesson : Functions - Quadratic & Log

bookmarked

5. Algebraic Functions

5.1 Solving Quadratic Functions

These questions typically provide the
f(x)f(x)f(x) values for certain xxx-values and would require you to find the quadratic expression. For this, we substitute the xxx-values and find the coefficients/constants.

Example 6

Where f(x)f(x)f(x) is a quadratic expression, f(5)=f(−5),f(0)=15f(5) = f(-5), f(0) = 15f(5)=f(−5),f(0)=15 and f(3)=33f(3) = 33f(3)=33, then what is f(10)=?f(10) = ?f(10)=?

Solution

Let f(x)=ax2+bx+cf(x) = ax^2 + bx + cf(x)=ax2+bx+c

f(5)=f(−5)f(5) = f(-5)f(5)=f(−5)
⇒
25a+5b+c=25a−5b+c 25a + 5b + c = 25a - 5b + c25a+5b+c=25a−5b+c
⇒
10b=0 10b = 010b=0
⇒
b=0 \bm{b = 0}b=0

f(0)f(0)f(0) = c=15\bm{c = 15}c=15

f(3)=(a×9)+0+15=33f(3) = (a \times 9) + 0 + 15 = 33f(3)=(a×9)+0+15=33
⇒
a=2\bm{a = 2}a=2

∴f(x)=2x2+15\therefore f(x) = 2x^2 + 15∴f(x)=2x2+15

f(10)=200+15=215f(10) = 200 + 15 = 215f(10)=200+15=215

Answer: 215

5.2 Solving Logarithmic Functions

We have to remember the basic rule of logarithm listed below.

Rule:
logb a \mathrm{log}_b \space alogb​ a is defined when a>0,b>0a > 0, b > 0a>0,b>0 and b≠1b \ne 1b=1

Example 7

log∣x∣−4x2−3x−10 \mathrm{log}_{|x| - 4}x^2 - 3x - 10log∣x∣−4​x2−3x−10. What is the domain of xxx?

Solution

We need to find the acceptable values of xxx wherein x2−3x−10>0, ∣x∣−4>0x^2 - 3x - 10 > 0, \space |x| - 4 > 0x2−3x−10>0, ∣x∣−4>0 and ∣x∣−4≠1|x| - 4 \ne 1∣x∣−4=1

If
x2−3x−10>0x^2 - 3x - 10 > 0x2−3x−10>0
⇒
(x−5)(x+2)>0 (x - 5)(x + 2) > 0(x−5)(x+2)>0


Therefore,
x>5x > 5x>5 or x<−2x < -2x<−2.

If
∣x∣−4>0|x| - 4 > 0∣x∣−4>0, then x>4x > 4x>4 or x<−4x < -4x<−4.

If
∣x∣−4≠1|x| - 4 \ne 1∣x∣−4=1 ⇒ ∣x∣≠5|x| \ne 5∣x∣=5 ⇒ x≠5,−5x \ne 5, -5x=5,−5

Merging the two conditions we get the domain to be
(−∞,−4) ⋃ (5,∞)(- \infty, - 4)\space \bigcup \space(5, \infty)(−∞,−4) ⋃ (5,∞), where x≠−5x \ne -5x=−5

Answer:
(−∞,−4) ⋃ (5,∞),(-\infty, -4)\space \bigcup \space(5, \infty),(−∞,−4) ⋃ (5,∞), where x≠−5x \ne -5x=−5

Example 8

What is the domain of f(x)=log(x4−x)f(x) = \mathrm{log}(x^4 - x)f(x)=log(x4−x)

Solution

For a valid domain, x4−x>0x^4 - x > 0x4−x>0
⇒
x(x3−1)>0 x(x^3 - 1) > 0x(x3−1)>0
⇒
x(x−1)(x2+x+1)>0 [x2+x+1is rejected as it has imaginary roots] x(x - 1)(x^2 + x + 1) > 0 \space [x^2 + x + 1 \text{is rejected as it has imaginary roots}]x(x−1)(x2+x+1)>0 [x2+x+1is rejected as it has imaginary roots]
⇒
0 00 and 111 are the deflection points.


x4−xx^4 - xx4−x is positive in the range of (−∞,0) ⋃ (1,∞)(- \infty, 0)\space \bigcup \space(1, \infty)(−∞,0) ⋃ (1,∞)

Answer:
(−∞,0) ⋃ (1,∞)(- \infty, 0)\space \bigcup \space(1, \infty)(−∞,0) ⋃ (1,∞)

Loading...Loading Video....