log∣x∣−4x2−3x−10. What is the domain of x?
Solution
We need to find the acceptable values of
x wherein x2−3x−10>0, ∣x∣−4>0 and ∣x∣−4=1
If x2−3x−10>0
⇒ (x−5)(x+2)>0

Therefore, x>5 or x<−2.
If ∣x∣−4>0, then x>4 or x<−4.
If ∣x∣−4=1 ⇒ ∣x∣=5 ⇒ x=5,−5
Merging the two conditions we get the domain to be (−∞,−4) ⋃ (5,∞), where x=−5
Answer: (−∞,−4) ⋃ (5,∞), where x=−5