calendarBack
Quant

/

Algebra

/

Inequalities
ALL MODULES

CAT 2025 Lesson : Inequalities - Multiple Modulus Functions

bookmarked

Example 9

For what values of xx is 3x+4x2| 3x +4 | \leq | x - 2 |?

(1)
[3,12] [-3,\dfrac{-1}{2}]            

(2)
(,3][2,) (-∞, -3] \cup [ 2, ∞)            

(3)
(,12] (-∞, \dfrac{-1}{2}]            

(4)
[43,12] [\dfrac{-4}{3}, \dfrac{-1}{2}]

Solution

The deflection points for linear modulus functions can be ascertained by equating them to 0.

When 3x+4=03x + 4 = 0x=43 \bm{x = - \dfrac{4}{3}} and when x2=0 x - 2 =0 x=2\bm{ x = 2}

These are deflection points for these lines.

Condition Expansion of modulus Acceptable Range
x2 x \geq 2 3x+4x2 3x +4 \leq x - 2
x3\bm{x \leq - 3}
None
43x<2\dfrac{-4}{3} \leq x \lt 2 3x+4(x2) 3x +4 \leq -(x - 2)
4x24x \leq - 2
x12\bm{x \leq \dfrac{-1}{2}}
43x12\dfrac{-4}{3} \leq x \leq \dfrac{-1}{2}
x<43x \lt \dfrac{-4}{3} (3x+4)(x2) -(3x +4) \leq -(x - 2)
2x6-2x \leq - 6
x3 \bm{x \geq - 3}
3x43 -3 \leq x \leq \dfrac{-4}{3}


Combining the two acceptable ranges we get the final acceptable range of 3x12 \bm{- 3 \leq x \leq \dfrac{-1}{2}}

Answer: (1)[3,12] (1) \left[- 3, \dfrac{-1}{2}\right]


Example 10

How many values of xx satisfy 2x1+x3=8| 2x - 1| + | x - 3| = 8?

Solution

The deflection points to determine the sign when the modulus is removed are ascertained by equating each linear function in the modulus to 0.
The deflection points for 2x1+x3=8| 2x - 1| + | x - 3| = 8 are at x=12x = \dfrac{1}{2} and x=3 x = 3

Condition Expansion of modulus Acceptable Range
x3 x \geq 3 2x1+x3=8 2x -1 + x - 3 = 8
x=4\bm{x =4}
Accepted
12x<3\dfrac{1}{2} \leq x \lt 3 2x1(x3)=8 2x -1 - (x - 3)=8
x=6\bm{ x = 6}
Rejected (not in range)
x<12x \lt \dfrac{1}{2} (2x1)(x3)=8 -(2x - 1) - (x - 3) = 8
x=43 \bm{x = \dfrac{-4}{3}}
Accepted

∴ This equation has 2 solutions.

Answer:
22


Example 11

For what values of xx is x+1+2x+x+3x+8| x + 1 | + | 2 - x | + | x + 3 | \leq x + 8?

Solution

We first rewrite 2x| 2 - x| as x2| x - 2| so that we get a positive result for x>2x \gt 2.
x+1+x2+x+3x+8| x + 1| + | x - 2 | + | x + 3 | \leq x + 8

Deflection points are
x=3,1x = -3, -1 and 22. Rewriting the terms in the ascending order of thier deflection values,

x+3+x+1+x2x+8| x + 3| + | x + 1 | + | x - 2 | \leq x + 8

Condition Expansion of modulus Acceptable Range
x2 x \geq 2 x+3+x+1+x2x+8 x + 3 + x + 1 + x - 2 \leq x+8
2x62x \leq 6
x3\bm{x \leq 3}
2x32 \leq x \leq 3
1x<2- 1 \leq x \lt 2 x+3+x+1(x2)x+8 x + 3 +x + 1 - (x - 2)\leq x + 8
68\bm{6 \leq 8}
This is always true
1x<2-1 \leq x \lt 2
3x<1- 3 \leq x \lt - 1 x+3(x+1)(x2)x+8 x + 3 - (x + 1) - (x - 2) \leq x+8
2x4-2x \leq 4
x2\bm{x \geq -2}
2x<1-2 \leq x \lt -1
x<3x \lt - 3 (x+3)(x+1)(x2)x+8 -(x + 3) - (x + 1) - (x - 2) \leq x + 8
4x<10- 4x \lt 10
x>2.5\bm{x \gt - 2.5}
None

Combining the acceptable ranges we get
2x3 - 2 \leq x \leq 3

Answer:
2x3 - 2 \leq x \leq 3


Example 12

What is the minimum value of f(x)f(x), wheref(x) f(x) = x5+x+6+x3| x - 5 | + | x + 6 | + | x - 3 | ?

Solution

As this is a sum of modulus functions with linear expression, the minimum value will be at one of the deflection points, i.e., when one of the modulus function equals 0.

The deflection points are x=5,6 x = 5, -6 and 33.

f(5)f(5) == 0+11+2=13 0 + 11 +2 = 13

f(6)f(-6) == 11+0+9=20 11 + 0 + 9 = 20

f(3)f(3) == 2+9+0=11 2 + 9 + 0 = 11

∴ Minimum value of
f(x)=11f(x) = 11

Answer:
1111


Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock