Plans
Dashboard
Daily & Speed
Quant
Verbal
DILR
Compete
Free Stuff
Lines And Triangles
MODULES
CONCEPTS & CHEATSHEET
SPEED CONCEPTS
PRACTICE
![]() |
As alternate interior angles of a transversal are equal, ∠1=∠4 -----(I) ∠3=∠5 -----(II) ∠4+∠2+∠5 = 180° (Angles along the line PQ) Substituting (I) and (II), ∠1+∠2+∠3 = 180° |
![]() |
The following three are linear pairs ∠1+∠4 = 180° ; ∠2+∠5 = 180° ; ∠3+∠6 = 180° ; ∠1+∠2+∠3 = 180° (Sum of angles of a △ABC) Adding the linear pairs, we get ∠1+∠2+∠3+∠4+ ∠5+∠6 = 540° ⇒ 180° + ∠4+∠5+∠6=540° ⇒ ∠4+∠5+∠6=360° |
![]() |
If we join B and C, then sum of angles of △ABC, 50°+45°+∠b+35° +∠c=180° ⇒ ∠b+∠c = 50° -----(1) In △BDC, ∠b+∠c+∠d = 180° Substituting Eq(1), ⇒ ∠d+50° = 180° ⇒ ∠d=130° |
Want to read the full content
Unlock this content & enjoy all the features of the platform
Subscribe Now