+91 9600 121 800

Plans

Dashboard

Daily & Speed

Quant

Verbal

DILR

Compete

Free Stuff

calendarBack
Quant

/

Algebra

/

Logarithm

Logarithm

MODULES

bookmarked
Basics of Logarithm
bookmarked
Exponential Function
bookmarked
Log Properties
bookmarked
Applying Log Properties
bookmarked
Characteristic & mantissa
bookmarked
Additional Problems
bookmarked
Past Questions

CONCEPTS & CHEATSHEET

Concept Revision Video

SPEED CONCEPTS

Logarithms 1
-/10

PRACTICE

Logarithm : Level 1
Logarithm : Level 2
Logarithm : Level 3
ALL MODULES

CAT 2025 Lesson : Logarithm - Additional Problems

bookmarked

5. Additional Examples

Example 11

Solve for xxx where log2log33x\mathrm{log}_{2}\mathrm{log} _{3} {3x}log2​log3​3x === 0
(111) 111            (222) 444            (333) 999            (444) 161616           

Solution

log2log33x\mathrm{log} _{2} \mathrm{log} _{3} {3x}log2​log3​3x === 000
⇒
log33x\mathrm{log} _{3} {3x}log3​3x === 111
⇒
3x3x3x === 333 ⇒ xxx === 111

Answer: (
111) 111


Example 12

If log100.04\mathrm{log} _{10} {0.04}log10​0.04 === −1.398-1.398−1.398, then log10400\mathrm{log} _{10} {400}log10​400 === ?
(111)1.6021.6021.602            (222)2.3982.3982.398            (333) 2.6022.6022.602            (444) 3.3983.3983.398           

Solution

log10400\mathrm{log} _{10} {400}log10​400 === log10(0.04×10000)\mathrm{log} _{10} {(0.04 \times 10000)}log10​(0.04×10000)
=== log100.04+log10104\mathrm{log} _{10} {0.04} + \mathrm{log} _{10} {10^4}log10​0.04+log10​104
=== −1.398+4-1.398 + 4−1.398+4 === 2.6022.6022.602

Answer: (
333) 2.6022.6022.602


Example 13

If x=log102 x = \mathrm{log} _{10} {2}x=log10​2 and y=log105 y = \mathrm{log} _{10} {5}y=log10​5 , then log52\mathrm{log} _{5} {2}log5​2 === ?
(111) 2y−x2y+x\dfrac{2y - x}{2y +x}2y+x2y−x​           (222)2x+y2x−y\dfrac{2x + y}{2x - y}2x−y2x+y​           (333) 2−x−2y1−x\dfrac{2 - x - 2y}{1 - x}1−x2−x−2y​           (444) 2−2x−y1−y\dfrac{2 - 2x - y}{1 - y}1−y2−2x−y​          

Solution

By substituting in each of the options we find that only option (3) satisfies

=2−x−2y1−x= \dfrac{2 - x - 2y}{1 - x}=1−x2−x−2y​

=2−(log 2+2log 5)1−log 2= \dfrac{2 - (\mathrm{log} \ 2 + 2\mathrm{log} \ 5)}{1 - \mathrm{log} \ 2}=1−log 22−(log 2+2log 5)​

=2−log(2×52)1−log 2= \dfrac{2 - \mathrm{log} (2 \times 5^{2})}{1 - \mathrm{log} \ 2}=1−log 22−log(2×52)​ =log 100−log 50log 10−log 2= \dfrac{\mathrm{log} \ 100 - \mathrm{log} \ 50}{\mathrm{log} \ 10 - \mathrm{log} \ 2}=log 10−log 2log 100−log 50​ =log 2log 5=log52=\dfrac{\mathrm{log} \ 2}{\mathrm{log} \ 5} = \mathrm{log}_{5} {2}=log 5log 2​=log5​2

Answer: (
333) 2−x−2y1−x\dfrac{2 - x - 2y}{1 - x}1−x2−x−2y​


Example 14

If xxx === log9144\mathrm{log} _{9} {144}log9​144 and yyy === log123\mathrm{log} _{12} {3}log12​3, then xxx === ?
(111) 1y\dfrac{1}{y}y1​           (222) 32y\dfrac{3}{2y}2y3​           (333) 2y3\dfrac{2y}{3}32y​           (444) 2y2y2y          

Solution

xxx === log32122\mathrm{log} _{3^2} {12^2}log32​122 === 22log312\dfrac{2}{2} \mathrm{log} _{3} {12}22​log3​12 === 1log123\dfrac{1}{\mathrm{log} _{12} {3}}log12​31​ === 1y\dfrac{1}{y}y1​

Answer: (
111) 1y\dfrac{1}{y}y1​


Example 15

logx+log(2x+6)\mathrm{log} {x} + \mathrm{log} {(2x + 6)} logx+log(2x+6) === log(6−5x)\mathrm{log} {(6 - 5x)}log(6−5x). Solve for xxx.
(111) 12\dfrac{1}{2}21​           (222) −6-6−6           (333) 12\dfrac{1}{2}21​ or −6-6−6           (444) None of the above          

Solution

log(2x2+6x)\mathrm{log} {(2x^2 + 6x)}log(2x2+6x) === log(6−5x)\mathrm{log} {(6 - 5x)}log(6−5x)
⇒
2x2+11x−6 2x^2 + 11x - 6 2x2+11x−6 === 000 ⇒ −6-6−6 or 12\dfrac{1}{2}21​

Log cannot be applied on a -ve number. At
xxx === −-− 6 66, log xxx will be negative and is, hence, rejected.

Answer: (
111) 12\dfrac{1}{2}21​


Example 16

If log2,log(22x+3) \mathrm{log} {2}, \mathrm{log} {(2^{2x} + 3)}log2,log(22x+3) and log(22x+27)\mathrm{log} (2^{2x} + 27)log(22x+27) are in arithmetic progression, then xxx === ?
(111) log23\mathrm{log} _{2} {3}log2​3           (222) 2log232 \mathrm{log} _{2} {3}2log2​3           (333) log25\mathrm{log} _{2} {\sqrt{5}}log2​5​          (444) 2log252 \mathrm{log} _{2} {5}2log2​5          

Solution

Let
22x2^{2x}22x === yyy
⇒
2log(y+3) 2 \mathrm{log} {(y+3)}2log(y+3) === log[2×(y+27)]\mathrm{log} {[2 \times (y+27)]}log[2×(y+27)]
⇒
log(y2+6y+9)\mathrm{log} {(y^2 + 6y +9 )}log(y2+6y+9) === log(2y+54)\mathrm{log} {(2y + 54)}log(2y+54)
⇒
y2+4y−45y^2 + 4y - 45 y2+4y−45 === 000
⇒
yyy === 555 or −9-9−9 [−9-9−9 is rejected.]

Where
x=5x = 5x=5, yyy === 22x2^{2x}22x === 22log222^{2 \mathrm{log} _{2} {\sqrt{2}}}22log2​2​ === 2log252^{\mathrm{log} _{2} {5}}2log2​5 === 555

Answer: (
333) log25\mathrm{log} _{2} {\sqrt{5}}log2​5​


Example 17

How many values of xxx satisfy logx2−2x+1[logx2+x+1(3x2−6x+7)]=0\mathrm{log}_{x^2 - 2x +1}[\mathrm{log}_{x^2+x +1} {(3x^2 - 6x +7)}] = 0logx2−2x+1​[logx2+x+1​(3x2−6x+7)]=0
(1) 0               (2) 1              (3) 2              (4) More than 2

Solution

logx2−2x+1[logx2+x+1(3x2−6x+7)]=0\mathrm{log}_{x^2 - 2x +1}[\mathrm{log}_{x^2+x +1} {(3x^2 - 6x +7)}] = 0logx2−2x+1​[logx2+x+1​(3x2−6x+7)]=0

Removing the first logarithm,
⇒
[logx2+x+1(3x2−6x+7)]=(x2−2x+1)0[\mathrm{log}_{x^2+x +1} {(3x^2 - 6x +7)}] = (x^2 - 2x +1)^0[logx2+x+1​(3x2−6x+7)]=(x2−2x+1)0

⇒
[logx2+x+1(3x2−6x+7)]=1[log_{x^2+x+1} {(3x^2 - 6x +7)}] = 1[logx2+x+1​(3x2−6x+7)]=1

Removing the next logarithm,
⇒
(3x2−6x+7)=(x2+x+1)1(3x^2 - 6x +7) = (x^2 + x+1)^1(3x2−6x+7)=(x2+x+1)1

⇒
2x2−7x+6=02x^2 - 7x +6 = 02x2−7x+6=0

Solving the quadratic equation, we get
⇒
xxx = 32\dfrac{3}{2}23​, 2

It seems as though 2 solutions exist. However, there are variables in the bases and the value. We need to substitute these solutions and check if log holds good, i.e.,
logba\mathrm{log}_{b} {a}logb​a is defined where aaa > 0, bbb > 0 and b≠1b \neq 1b=1

When
x=2x = 2x=2 is substituted into the base x2−2x+1x^2 - 2x +1x2−2x+1,

⇒
x2−2x+1=4−4+1=1x^2 - 2x +1 = 4 -4 +1 = 1x2−2x+1=4−4+1=1

As the base is not allowed to be 1, the solution
x=2x = 2x=2 is rejected.

Substituting
x=32=1.5x = \dfrac{3}{2} = 1.5x=23​=1.5 into the following expressions we get

x2−2x+1=2.25−3+1=0.25x^2 - 2x +1 = 2.25 - 3 +1 = 0.25 x2−2x+1=2.25−3+1=0.25

x2+x+1=2.25+1.5+1=4.75x^2 + x + 1 = 2.25 + 1.5 + 1 = 4.75x2+x+1=2.25+1.5+1=4.75

(The bases are positive and not equal to 1)

3x2−6x+7=6.75−9+7=4.753x^2 - 6x + 7 = 6.75 - 9 + 7 = 4.753x2−6x+7=6.75−9+7=4.75

(The value is also positive)

Therefore, there is only 1 solution that exists, i.e.,
x=1.5x = 1.5x=1.5

Answer: (2) 1


Loading...Loading Video....