calendarBack
Quant

/

Algebra

/

Logarithm
ALL MODULES

CAT 2025 Lesson : Logarithm - Applying Log Properties

bookmarked

Example 4

Which of these equals log 48?\mathrm{log} \ 48? (1) log 4+log 8\mathrm{log} \ 4 + \mathrm{log} \ 8     \space \space \space \space
(2)
log 32+log 16\mathrm{log} \ 32 + \mathrm{log} \ 16     \space \space \space \space
(3)
log 6×log 8\mathrm{log} \ 6 \times \mathrm{log} \ 8     \space \space \space \space
(4)
log 96log 2\mathrm{log} \ 96 - \mathrm{log} \ 2     \space \space \space \space

Solution

Option
(4)(4) is correct
log 96log 2\mathrm{log} \ 96 - \mathrm{log} \ 2 =log 962=log 48= \mathrm{log} \ \dfrac{96}{2} = \mathrm{log} \ 48

Note that while
log 6+log 8=log 48\mathrm{log} \ 6 + \mathrm{log} \ 8 = \mathrm{log} \ 48, option (c) log 6×log 8\mathrm{log} \ 6 \times \mathrm{log} \ 8 log 48\ne \mathrm{log} \ 48

Answer:
(4)(4) log 96log 2\mathrm{log} \ 96 - \mathrm{log} \ 2

Example 5

What is the value of log(log 100500)?\mathrm{log} (\mathrm{log} \ 100^{500})?

Solution

With the base not mentioned, this is assumed to be a common logarithm with base 1010.

log (log 100500)\mathrm{log} \ (\mathrm{log} \ 100^{500})
=log (log (102)500)= \mathrm{log} \ (\mathrm{log} \ (10^{2})^{500}) =log(log 101000)=\mathrm{log} (\mathrm{log} \ 10^{1000})
=log (1000log 10) = \mathrm{log} \ (1000 \mathrm{log} \ 10)
=log 1000= \mathrm{log} \ 1000
=log 103=3= \mathrm{log} \ 10^{3} = 3

Answer:
33

Example 6

What is log328=?\mathrm{log} _{\sqrt{32}}{8} = ?

Solution

log328\mathrm{log} _{\sqrt{32}}{8} =3 log322= 3 \ \mathrm{log} _{\sqrt{32}}{2} =3log232= \dfrac{3}{\mathrm{log} _{2}{\sqrt{32}}} =3log2252= \dfrac{3}{\mathrm{log} _{2}{2^{\frac{5}{2}}}} =352×log22= \dfrac{3}{\dfrac{5}{2} \times \mathrm{log} _{2}{2}} =65=1.2=\dfrac{6}{5} = 1.2

Alternatively

log328\mathrm{log} _{\sqrt{32}}{8} =log25223=\mathrm{log} _{2^{\frac{5}{2}}}{2^{3}} =352 log22= \dfrac{3}{\frac{5}{2}} \ \mathrm{log} _{2}{2} =65=1.2=\dfrac{6}{5} = 1.2

Answer:
1.21.2

Example 7

What is log0.2564\mathrm{log} _{0.25} {64} == ?

Solution

64=2664 = 2^6 and 0.50.5 == 222^{-2} .

So,
log0.2564\mathrm{log} _{0.25} {64} == log2226\mathrm{log} _{2^{-2}} {2^6} == 62×log22\dfrac{6}{-2} \times \mathrm{log} _{2} {2} == 3-3

Answer:
3-3


Example 8

Simplify logyx2+1log(1/x)y3\mathrm{log} _{\sqrt{y}} {x^2} + \dfrac{1}{\mathrm{log} _{(1/x)} {y^3}}

Solution

logyx2+1log1/xy3\mathrm{log} _{\sqrt{y}} {x^2} + \dfrac{1}{\mathrm{log} _{1/x} {y^3}} == logyx2+logy3x1\mathrm{log} _{\sqrt{y}} {x^2} + \mathrm{log} _{y^3} {x^{-1}}

== 20.5logyx13logyx\dfrac{2}{0.5}\mathrm{log} _{y} {x} - \dfrac{1}{3} \mathrm{log} _{y} {x} == logyx(413)\mathrm{log} _{y} {x} ( 4 - \dfrac{1}{3}) == 113logyx\dfrac{11}{3} \mathrm{log} _{y} {x}

Answer:
113logyx\dfrac{11}{3} \mathrm{log} _{y} {x}


Loading...Loading Video....