+91 9600 121 800

Plans

Dashboard

Daily & Speed

Quant

Verbal

DILR

Compete

Free Stuff

calendarBack
Quant

/

Algebra

/

Logarithm

Logarithm

MODULES

bookmarked
Basics of Logarithm
bookmarked
Exponential Function
bookmarked
Log Properties
bookmarked
Applying Log Properties
bookmarked
Characteristic & mantissa
bookmarked
Additional Problems
bookmarked
Past Questions

CONCEPTS & CHEATSHEET

Concept Revision Video

SPEED CONCEPTS

Logarithms 1
-/10

PRACTICE

Logarithm : Level 1
Logarithm : Level 2
Logarithm : Level 3
ALL MODULES

CAT 2025 Lesson : Logarithm - Applying Log Properties

bookmarked

Example 4

Which of these equals log 48?\mathrm{log} \ 48?log 48? (1) log 4+log 8\mathrm{log} \ 4 + \mathrm{log} \ 8log 4+log 8     \space \space \space \space    
(2)
log 32+log 16\mathrm{log} \ 32 + \mathrm{log} \ 16log 32+log 16     \space \space \space \space    
(3)
log 6×log 8\mathrm{log} \ 6 \times \mathrm{log} \ 8log 6×log 8     \space \space \space \space    
(4)
log 96−log 2\mathrm{log} \ 96 - \mathrm{log} \ 2log 96−log 2     \space \space \space \space    

Solution

Option
(4)(4)(4) is correct
log 96−log 2\mathrm{log} \ 96 - \mathrm{log} \ 2log 96−log 2 =log 962=log 48= \mathrm{log} \ \dfrac{96}{2} = \mathrm{log} \ 48=log 296​=log 48

Note that while
log 6+log 8=log 48\mathrm{log} \ 6 + \mathrm{log} \ 8 = \mathrm{log} \ 48log 6+log 8=log 48, option (c) log 6×log 8\mathrm{log} \ 6 \times \mathrm{log} \ 8log 6×log 8 ≠log 48\ne \mathrm{log} \ 48=log 48

Answer:
(4)(4)(4) log 96−log 2\mathrm{log} \ 96 - \mathrm{log} \ 2log 96−log 2

Example 5

What is the value of log(log 100500)?\mathrm{log} (\mathrm{log} \ 100^{500})?log(log 100500)?

Solution

With the base not mentioned, this is assumed to be a common logarithm with base 101010.

log (log 100500)\mathrm{log} \ (\mathrm{log} \ 100^{500})log (log 100500)
=log (log (102)500)= \mathrm{log} \ (\mathrm{log} \ (10^{2})^{500})=log (log (102)500) =log(log 101000)=\mathrm{log} (\mathrm{log} \ 10^{1000})=log(log 101000)
=log (1000log 10) = \mathrm{log} \ (1000 \mathrm{log} \ 10)=log (1000log 10)
=log 1000= \mathrm{log} \ 1000=log 1000
=log 103=3= \mathrm{log} \ 10^{3} = 3=log 103=3

Answer:
333

Example 6

What is log328=?\mathrm{log} _{\sqrt{32}}{8} = ?log32​​8=?

Solution

log328\mathrm{log} _{\sqrt{32}}{8}log32​​8 =3 log322= 3 \ \mathrm{log} _{\sqrt{32}}{2}=3 log32​​2 =3log232= \dfrac{3}{\mathrm{log} _{2}{\sqrt{32}}}=log2​32​3​ =3log2252= \dfrac{3}{\mathrm{log} _{2}{2^{\frac{5}{2}}}}=log2​225​3​ =352×log22= \dfrac{3}{\dfrac{5}{2} \times \mathrm{log} _{2}{2}}=25​×log2​23​ =65=1.2=\dfrac{6}{5} = 1.2=56​=1.2

Alternatively

log328\mathrm{log} _{\sqrt{32}}{8}log32​​8 =log25223=\mathrm{log} _{2^{\frac{5}{2}}}{2^{3}}=log225​​23 =352 log22= \dfrac{3}{\frac{5}{2}} \ \mathrm{log} _{2}{2}=25​3​ log2​2 =65=1.2=\dfrac{6}{5} = 1.2=56​=1.2

Answer:
1.21.21.2

Example 7

What is log0.2564\mathrm{log} _{0.25} {64}log0.25​64 === ?

Solution

64=2664 = 2^664=26 and 0.50.50.5 === 2−22^{-2} 2−2 .

So,
log0.2564\mathrm{log} _{0.25} {64}log0.25​64 === log2−226\mathrm{log} _{2^{-2}} {2^6}log2−2​26 === 6−2×log22\dfrac{6}{-2} \times \mathrm{log} _{2} {2}−26​×log2​2 === −3-3−3

Answer:
−3-3−3


Example 8

Simplify logyx2+1log(1/x)y3\mathrm{log} _{\sqrt{y}} {x^2} + \dfrac{1}{\mathrm{log} _{(1/x)} {y^3}}logy​​x2+log(1/x)​y31​

Solution

logyx2+1log1/xy3\mathrm{log} _{\sqrt{y}} {x^2} + \dfrac{1}{\mathrm{log} _{1/x} {y^3}}logy​​x2+log1/x​y31​ === logyx2+logy3x−1\mathrm{log} _{\sqrt{y}} {x^2} + \mathrm{log} _{y^3} {x^{-1}}logy​​x2+logy3​x−1

=== 20.5logyx−13logyx\dfrac{2}{0.5}\mathrm{log} _{y} {x} - \dfrac{1}{3} \mathrm{log} _{y} {x}0.52​logy​x−31​logy​x === logyx(4−13)\mathrm{log} _{y} {x} ( 4 - \dfrac{1}{3}) logy​x(4−31​) === 113logyx\dfrac{11}{3} \mathrm{log} _{y} {x}311​logy​x

Answer:
113logyx\dfrac{11}{3} \mathrm{log} _{y} {x}311​logy​x


Loading...Loading Video....