+91 9600 121 800

Plans

Dashboard

Daily & Speed

Quant

Verbal

DILR

Compete

Free Stuff

calendarBack
Quant

/

Algebra

/

Logarithm

Logarithm

MODULES

bookmarked
Basics of Logarithm
bookmarked
Exponential Function
bookmarked
Log Properties
bookmarked
Applying Log Properties
bookmarked
Characteristic & mantissa
bookmarked
Additional Problems
bookmarked
Past Questions

CONCEPTS & CHEATSHEET

Concept Revision Video

SPEED CONCEPTS

Logarithms 1
-/10

PRACTICE

Logarithm : Level 1
Logarithm : Level 2
Logarithm : Level 3
ALL MODULES

CAT 2025 Lesson : Logarithm - Concepts & Cheatsheet

bookmarked
Note: The video for this module contains a summary of all the concepts covered in this lesson. The video would serve as a good revision. Please watch this video in intervals of a few weeks so that you do not forget the concepts. Below is a cheatsheet that includes all the formulae but not necessarily the concepts covered in the video.

   7. Cheatsheet

111) If n=abn = a^{b}n=ab, then logan=b\mathrm{log}_{a} {n} = bloga​n=b

222) ex=∑n=0∞xnn!e^{x} = \displaystyle\sum_{n=0}^{\infty} \dfrac{x^{n}}{n!}ex=n=0∑∞​n!xn​ =x00!+x11!+x22!+x33!+...= \dfrac{x^{0}}{0!} + \dfrac{x^{1}}{1!} + \dfrac{x^{2}}{2!} + \dfrac{x^{3}}{3!} + ...=0!x0​+1!x1​+2!x2​+3!x3​+...

333)
S.No. Rule
1 logax\mathrm{log} _{a}{x}loga​x is defined where (i) xxx and aaa are real numbers, (ii) x>0x > 0x>0 , (iii) a>0a > 0a>0 and a≠1a \ne 1a=1
2 loga1=0\mathrm{log} _{a}{1} = 0loga​1=0
3 logaa=1\mathrm{log} _{a}{a} = 1loga​a=1
4 log a+log b=log ab\mathrm{log} \ a + \mathrm{log} \ b = \mathrm{log} \ ablog a+log b=log ab
5 log a\mathrm{log} \ alog a − log b-\ \mathrm{log} \ b− log b =log (ab)= \mathrm{log} \ \left( \dfrac{a}{b}\right)=log (ba​)
6 log ab=b log a\mathrm{log} \ a^{b} = b \ \mathrm{log} \ alog ab=b log a
7 logba=1logab\mathrm{log} _{b}{a} = \dfrac{1}{\mathrm{log} _{a}{b}}logb​a=loga​b1​
8 logbnam=mn×logba\mathrm{log} _{b^{n}}{a^{m}} = \dfrac{m}{n} \times \mathrm{log} _{b}{a}logbn​am=nm​×logb​a
9 logba=logca×logbc\mathrm{log} _{b}{a} = \mathrm{log} _{c}{a} \times \mathrm{log} _{b}{c}logb​a=logc​a×logb​c
10 logba\mathrm{log} _{b}{a}logb​a =logcalogcb= \dfrac{\mathrm{log} _{c}{a}}{\mathrm{log} _{c}{b}}=logc​blogc​a​
11 alogax=xa^{\mathrm{log} _{a}{x}} = xaloga​x=x


444) Characteristic is the integer part, before the decimal point, of a logarithm of a number. Mantissa is the fractional part, after the decimal point, of a logarithm of a number.

5) If the characteristic of a common logarithm is a positive number, say
xxx, then the number of digits of the number to the left of the decimal point is x+1x + 1x+1.

6) If the characteristic of a common logarithm is a negative number, say
xxx, then the number of zeroes to the right of the decimal point and before the first non-zero digit is x–1x – 1x–1.

Loading...Loading Video....