calendarBack
Quant

/

Algebra

/

Logarithm
ALL MODULES

CAT 2025 Lesson : Logarithm - Exponential Function

bookmarked

2. Exponential Function

For any real number
xx, ex=n=0xnn!e^{x} = \displaystyle\sum_{n=0}^{\infty} \dfrac{x^{n}}{n!} =x00!+x11!+x22!+x33!+...= \dfrac{x^{0}}{0!} + \dfrac{x^{1}}{1!} + \dfrac{x^{2}}{2!} + \dfrac{x^{3}}{3!} + ...

ex=1+x+x22!+x33!+...e^{x} = 1 + x + \dfrac{x^{2}}{2!} + \dfrac{x^{3}}{3!} + ...

While complex questions pertaining to the exponential function are not expected, there could be questions pertaining to basic properties. These listed below are derived from the above equation.

11) e0=1e^{0} = 1
22) e=1+1+12!+13!+...2.71828e = 1 + 1 + \dfrac{1}{2!} + \dfrac{1}{3!} + ... \thicksim 2.71828
33) ee is to be treated as a constant in arithmetic operations.
e2×e3=e5e^{2} \times e^{3} = e^{5}
(e5)10=e50(e^{5})^{10} = e^{50}
e2e3=e1\dfrac{e^{2}}{e^{3}} = e^{-1}
44) Given ee is a positive constant, where xx is a real number (positive or negative) exe^{x} is always positive, i.e. ex>0e^{x} > 0

The graph of the exponential function and logarithmic functions are as below.



Example 3

What is the value of loge51!+(loge5)22!+(loge5)23!+...?\dfrac{\mathrm{log} _{e} {5}}{1!} + \dfrac{(\mathrm{log} _{e} {5})^{2}}{2!} + \dfrac{(\mathrm{log} _{e} {5})^{2}}{3!} + ... ?

Solution

loge51!+(loge5)22!+(loge5)23!+...\dfrac{\mathrm{log} _{e} {5}}{1!} + \dfrac{(\mathrm{log} _{e} {5})^{2}}{2!} + \dfrac{(\mathrm{log} _{e} {5})^{2}}{3!} + ...

=
(1+loge51!+(loge5)22!+(loge5)23!+...)1\left(1 + \dfrac{\mathrm{log} _{e} {5}}{1!} + \dfrac{(\mathrm{log} _{e} {5})^{2}}{2!} + \dfrac{(\mathrm{log} _{e} {5})^{2}}{3!} + ...\right) - 1 =eloge51=e^{\mathrm{log} _{e} {5}} - 1

=51=4= 5 - 1 = 4

Answer:
44

Note: The following is the proof for
eloge5=5e^{\mathrm{log} _{e} {5}} = 5

Let
x=eloge5x = e^{\mathrm{log} _{e} {5}}

Expressing
xx as logarithm, we get
logex=loge5\mathrm{log} _{e} {x} = \mathrm{log} _{e} {5}x=5x = 5

Loading...Loading Video....