+91 9600 121 800

Plans

Dashboard

Daily & Speed

Quant

Verbal

DILR

Compete

Free Stuff

calendarBack
Quant

/

Algebra

/

Logarithm

Logarithm

MODULES

bookmarked
Basics of Logarithm
bookmarked
Exponential Function
bookmarked
Log Properties
bookmarked
Applying Log Properties
bookmarked
Characteristic & mantissa
bookmarked
Additional Problems
bookmarked
Past Questions

CONCEPTS & CHEATSHEET

Concept Revision Video

SPEED CONCEPTS

Logarithms 1
-/10

PRACTICE

Logarithm : Level 1
Logarithm : Level 2
Logarithm : Level 3
ALL MODULES

CAT 2025 Lesson : Logarithm - Log Properties

bookmarked

3. Logarithm Properties

S.No. Rule
1 logax\mathrm{log} _{a}{x}loga​x is defined where (i) xxx and aaa are real numbers, (ii) x>0x > 0x>0 , (iii) a>0a > 0a>0 and a≠1a \ne 1a=1
2 loga1=0\mathrm{log} _{a}{1} = 0loga​1=0
3 logaa=1\mathrm{log} _{a}{a} = 1loga​a=1
4 log a+log b=log ab\mathrm{log} \ a + \mathrm{log} \ b = \mathrm{log} \ ablog a+log b=log ab
5 log a\mathrm{log} \ alog a − log b-\ \mathrm{log} \ b− log b =log (ab)= \mathrm{log} \ \left( \dfrac{a}{b}\right)=log (ba​)
6 log ab=b log a\mathrm{log} \ a^{b} = b \ \mathrm{log} \ alog ab=b log a
7 logba=1logab\mathrm{log} _{b}{a} = \dfrac{1}{\mathrm{log} _{a}{b}}logb​a=loga​b1​
8 logbnam=mn×logba\mathrm{log} _{b^{n}}{a^{m}} = \dfrac{m}{n} \times \mathrm{log} _{b}{a}logbn​am=nm​×logb​a
9 logba=logca×logbc\mathrm{log} _{b}{a} = \mathrm{log} _{c}{a} \times \mathrm{log} _{b}{c}logb​a=logc​a×logb​c
10 logba\mathrm{log} _{b}{a}logb​a =logcalogcb= \dfrac{\mathrm{log} _{c}{a}}{\mathrm{log} _{c}{b}}=logc​blogc​a​
11 alogax=xa^{\mathrm{log} _{a}{x}} = xaloga​x=x


Brief explanations for some of the above rules are given below.

Rule 2: Let
loga1=x\mathrm{log} _{a} {1} = xloga​1=x ⇒ 1=ax.1 = a^{x}.1=ax. Therefore, x=0\bm{x = 0}x=0

Rule 3: Let
logaa\mathrm{log} _{a} {a}loga​a ⇒ a=axa = a^{x}a=ax. Therefore, x=1\bm{x = 1}x=1.

Rule 6:
log ab\mathrm{log} \ a^{b}log ab =log (a×a×...btimes)= \mathrm{log} \ {(a \times a \times ..._{b times})}=log (a×a×...btimes​) =log a+log a+...btimes= \mathrm{log} \ {a} + \mathrm{log} \ {a} + ... _{b times}=log a+log a+...btimes​ =b log a=b \ \mathrm{log} \ a=b log a

Rule 8:
logbnam=mlogbna\mathrm{log} _{b^{n}} {a^{m}} = m\mathrm{log} _{b^n}{a}logbn​am=mlogbn​a =mlogabn= \dfrac{m}{\mathrm{log} _{a}{b^{n}}}=loga​bnm​ =mnlogab= \dfrac{m}{n\mathrm{log} _{a} {b}}=nloga​bm​ =mn×logba= \dfrac{m}{n} \times \mathrm{log} _{b}{a}=nm​×logb​a

Rule 11: Let
alogax=ya^{\mathrm{log} _{a}{x}} = yaloga​x=y
Taking log to the base
aaa on both sides,
logax×logaa\mathrm{log} _{a}{x} \times \mathrm{log} _{a}{a}loga​x×loga​a =logay= \mathrm{log} _{a}{y}=loga​y
⇒
logax=logay\mathrm{log} _{a}{x} = \mathrm{log} _{a}{y}loga​x=loga​y ⇒ x=yx = yx=y
⇒
x=alogaxx = a^{\mathrm{log} _{a}{x}}x=aloga​x
Loading...Loading Video....