calendarBack
Quant

/

Algebra

/

Logarithm
ALL MODULES

CAT 2025 Lesson : Logarithm - Log Properties

bookmarked

3. Logarithm Properties

S.No. Rule
1 logax\mathrm{log} _{a}{x} is defined where (i) xx and aa are real numbers, (ii) x>0x > 0 , (iii) a>0a > 0 and a1a \ne 1
2 loga1=0\mathrm{log} _{a}{1} = 0
3 logaa=1\mathrm{log} _{a}{a} = 1
4 log a+log b=log ab\mathrm{log} \ a + \mathrm{log} \ b = \mathrm{log} \ ab
5 log a\mathrm{log} \ a  log b-\ \mathrm{log} \ b =log (ab)= \mathrm{log} \ \left( \dfrac{a}{b}\right)
6 log ab=b log a\mathrm{log} \ a^{b} = b \ \mathrm{log} \ a
7 logba=1logab\mathrm{log} _{b}{a} = \dfrac{1}{\mathrm{log} _{a}{b}}
8 logbnam=mn×logba\mathrm{log} _{b^{n}}{a^{m}} = \dfrac{m}{n} \times \mathrm{log} _{b}{a}
9 logba=logca×logbc\mathrm{log} _{b}{a} = \mathrm{log} _{c}{a} \times \mathrm{log} _{b}{c}
10 logba\mathrm{log} _{b}{a} =logcalogcb= \dfrac{\mathrm{log} _{c}{a}}{\mathrm{log} _{c}{b}}
11 alogax=xa^{\mathrm{log} _{a}{x}} = x


Brief explanations for some of the above rules are given below.

Rule 2: Let
loga1=x\mathrm{log} _{a} {1} = x1=ax.1 = a^{x}. Therefore, x=0\bm{x = 0}

Rule 3: Let
logaa\mathrm{log} _{a} {a}a=axa = a^{x}. Therefore, x=1\bm{x = 1}.

Rule 6:
log ab\mathrm{log} \ a^{b} =log (a×a×...btimes)= \mathrm{log} \ {(a \times a \times ..._{b times})} =log a+log a+...btimes= \mathrm{log} \ {a} + \mathrm{log} \ {a} + ... _{b times} =b log a=b \ \mathrm{log} \ a

Rule 8:
logbnam=mlogbna\mathrm{log} _{b^{n}} {a^{m}} = m\mathrm{log} _{b^n}{a} =mlogabn= \dfrac{m}{\mathrm{log} _{a}{b^{n}}} =mnlogab= \dfrac{m}{n\mathrm{log} _{a} {b}} =mn×logba= \dfrac{m}{n} \times \mathrm{log} _{b}{a}

Rule 11: Let
alogax=ya^{\mathrm{log} _{a}{x}} = y
Taking log to the base
aa on both sides,
logax×logaa\mathrm{log} _{a}{x} \times \mathrm{log} _{a}{a} =logay= \mathrm{log} _{a}{y}
logax=logay\mathrm{log} _{a}{x} = \mathrm{log} _{a}{y}x=yx = y
x=alogaxx = a^{\mathrm{log} _{a}{x}}
Loading...Loading Video....