3. Logarithm Properties
| S.No. |
Rule |
| 1 |
logax is defined where (i) x and a are real numbers, (ii) x>0 , (iii) a>0 and a=1 |
| 2 |
loga1=0 |
| 3 |
logaa=1 |
| 4 |
log a+log b=log ab |
| 5 |
log a − log b =log (ba) |
| 6 |
log ab=b log a |
| 7 |
logba=logab1 |
| 8 |
logbnam=nm×logba |
| 9 |
logba=logca×logbc |
| 10 |
logba =logcblogca |
| 11 |
alogax=x |
Brief explanations for some of the above rules are given below.
Rule 2: Let
loga1=x ⇒ 1=ax. Therefore, x=0
Rule 3: Let logaa ⇒ a=ax. Therefore, x=1.
Rule 6: log ab =log (a×a×...btimes) =log a+log a+...btimes =b log a
Rule 8: logbnam=mlogbna =logabnm =nlogabm =nm×logba
Rule 11: Let alogax=y
Taking log to the base a on both sides,
logax×logaa =logay
⇒ logax=logay ⇒ x=y
⇒ x=alogax