| 1 |
logax is defined where (i) x and a are real numbers, (ii) x>0 , (iii) a>0 and a=1 |
| 2 |
loga1=0 |
| 3 |
logaa=1 |
| 4 |
log a+log b=log ab |
| 5 |
log a − log b =log (ba) |
| 6 |
log ab=b log a |
| 7 |
logba=logab1 |
| 8 |
logbnam=nm×logba |
| 9 |
logba=logca×logbc |
| 10 |
logba =logcblogca |
| 11 |
alogax=x |