+91 9600 121 800

Plans

Dashboard

Daily & Speed

Quant

Verbal

DILR

Compete

Free Stuff

calendarBack
Quant

/

Numbers

/

Number Theory

Number Theory

MODULES

Basics of Numbers
Types of Numbers
Fractions
Arithmetic Operations
Other Numerical Operations
Algebraic Expansion
Prime Numbers
Counting Integers
Past Questions

CONCEPTS & CHEATSHEET

Concept Revision Video

SPEED CONCEPTS

Number Theory 1
-/10
Number Theory 2
-/10
Algebraic Expansion 1
-/10

PRACTICE

Number Theory : Level 1
Number Theory : Level 2
Number Theory : Level 3
ALL MODULES

CAT 2025 Lesson : Number Theory - Algebraic Expansion

bookmarked

4. Formulae and Powers to remember

4.1 Algebraic Expansions

The binomial expansion formula is provided below.

(a+b)n=(a + b)^n =(a+b)n= nC0anb0+^n C_0 a^n b^0 +nC0​anb0+ nC1an−1b1+^n C_1 a^{n-1} b^1 +nC1​an−1b1+ nC2an−2b2+...+^n C_2 a^{n-2} b^2 + ... +nC2​an−2b2+...+ nCna0bn^n C_n a^{0} b^nnCn​a0bn

Note: In the formula above,
nCr=n!r! (n−r)!^nC_{r} = \dfrac{n!}{r! \space (n - r)!}nCr​=r! (n−r)!n!​. This is detailed in Permutations and Combinations lesson.

It is easy to remember this if you observe the following.

1) The first term is
nC0anb0^nC_0a^nb^0nC0​anb0, where r=0r = 0r=0.
2) For every subsequent term,
rrr increases by 111, power of aaa reduces by 111 and power of bbb increases by 111.
3)
∴\therefore∴ the last term is nCna0bn^nC_na^0b^nnCn​a0bn
4) Note that if the power is
nnn, there will be n+1n + 1n+1 terms.

For instance, to derive the expansion for
(a+b)2(a+b)^2(a+b)2, we substitute n=2n=2n=2 in the formula above and get the following.

(a+b)2=(a + b)^2 =(a+b)2= 2C0a2b0+^2 C_0 a^2 b^0 +2C0​a2b0+ 2C1a1b1+^2 C_1 a^1 b^1 +2C1​a1b1+ 2C2a0b2^2 C_2 a^0 b^22C2​a0b2

⇒
(a+b)2=a2+2ab+b2 (a + b)^2 = a^2 + 2ab + b^2(a+b)2=a2+2ab+b2

Algebraic Formulae to Memorise

Expression Expansion
(a+b)n(a+b)^{n}(a+b)n nC0anb0+^n C_0 a^n b^0 +nC0​anb0+ nC1an−1b1+...+^n C_1 a^{n-1} b^1 + ... +nC1​an−1b1+...+ nCna0bn^nC_n a^{0} b^nnCn​a0bn
an−bna^{n} - b^{n}an−bn (a−b)(an−1+an−2b+...+bn−1)(a - b) (a^{n - 1} + a^{n - 2} b + ... + b^{n - 1})(a−b)(an−1+an−2b+...+bn−1)
(a+b)2(a+b)^2(a+b)2 a2+2ab+b2a^2 + 2 ab + b^2a2+2ab+b2
(a−b)2(a-b)^2(a−b)2 a2−2ab+b2a^2 - 2 ab + b^2a2−2ab+b2
a2−b2a^2-b^2a2−b2 (a+b)(a−b)(a + b) (a - b)(a+b)(a−b)
a2+b2a^2+b^2a2+b2 (a+b)2−2ab(a + b)^2 - 2 ab(a+b)2−2ab; or
(a−b)2+2ab(a - b)^2 + 2 ab(a−b)2+2ab
(a+b)3(a+b)^3(a+b)3 a3+3ab(a+b)+b3a^3 + 3ab (a + b) + b^3a3+3ab(a+b)+b3; or
a3+3a2b+3ab2+b3a^3 + 3 a^2 b + 3 a b^2 + b^3a3+3a2b+3ab2+b3
(a−b)3(a-b)^3(a−b)3 a3−3ab(a−b)−b3a^3 - 3ab (a - b) - b^3a3−3ab(a−b)−b3; or
a3−3a2b+3ab2−b3a^3 - 3 a^2 b + 3 a b^2 - b^3a3−3a2b+3ab2−b3
a3+b3a^3+b^3a3+b3 (a+b)(a2−ab+b2)(a + b) (a^2 - ab + b^2) (a+b)(a2−ab+b2); or
(a+b)3−3ab(a+b)(a + b)^3 - 3 ab (a + b)(a+b)3−3ab(a+b)
a3−b3a^3-b^3a3−b3 (a−b)(a2+ab+b2)(a - b) (a^2 + ab + b^2) (a−b)(a2+ab+b2); or
(a−b)3+3ab(a−b)(a - b)^3 + 3 ab (a - b)(a−b)3+3ab(a−b)
(a+b+c)2(a + b + c)^2(a+b+c)2 a2+b2+c2+2ab+2bc+2caa^2 + b^2 + c^2 + 2 ab + 2 bc + 2 caa2+b2+c2+2ab+2bc+2ca
a3+b3+c3−3abca^3 + b^3 + c^3 - 3 abca3+b3+c3−3abc (a+b+c)(a2+b2+c2−ab−bc−ca)(a + b + c) (a^2 + b^2 + c^2 - ab - bc - ca)(a+b+c)(a2+b2+c2−ab−bc−ca)
If a+b+c=0a+b+c=0a+b+c=0, then
a3+b3+c3a^3 + b^3 + c^3a3+b3+c3 ===
3abc3 abc3abc


The following are to be noted as well.
1)
(an+bn)(a^{n} + b^{n})(an+bn) is divisible by (a+b)(a + b)(a+b) if nnn is odd.
2)
(an−bn)(a^{n} - b^{n})(an−bn) is divisible by (a+b)(a + b)(a+b) if nnn is even.

Example 13

The remainder, when (1523+2323)(15^{23} + 23^{23})(1523+2323) is divided by 191919, is:
[CAT 2004]

(1)
444            (2) 151515            (3) 000            (4) 181818

Solution

(an+bn)(a^{n} + b^{n})(an+bn) is divisible by (a+b)(a + b)(a+b) if nnn is odd.

∴(1523+2323)\therefore (15^{23} + 23^{23})∴(1523+2323) is divisible by 15+23=3815 + 23 = 3815+23=38

∴(1523+2323)\therefore (15^{23} + 23^{23})∴(1523+2323) will perfectly divide 191919 and leave a remainder of 000.

Answer: (3)
000


Example 14

If R = 3065−29653064+2964\dfrac{30^{65} - 29^{65}}{30^{64} + 29^{64}}3064+29643065−2965​, then:
[CAT 2005]

(1)
000 < R < 0.10.10.1            (2) 0.10.10.1 < R < 0.50.50.5            (3) 0.50.50.5 < R < 1.01.01.0            (4) R > 1.01.01.0

Solution

an−bn=(a−b)(an−1+an−2b+...+bn−1)a^{n} - b^{n} = (a - b) (a^{n - 1} + a^{n - 2} b + ... + b^{n - 1})an−bn=(a−b)(an−1+an−2b+...+bn−1)

3065−2965=(30−29)(3064+3063×29+...+30×2963+2964)30^{65} - 29^{65} = (30 - 29) (30^{64} + 30^{63} \times 29 + ... + 30 \times 29^{63} + 29^{64})3065−2965=(30−29)(3064+3063×29+...+30×2963+2964)

=
(3064+2964)+(3063×29+...+30×2963)(30^{64} + 29^{64}) + (30^{63} \times 29 + ... + 30 \times 29^{63})(3064+2964)+(3063×29+...+30×2963)

∴\therefore∴ R = (3064+2964)+(3063×29+...+30×2963)3064+2964\dfrac{(30^{64} + 29^{64}) + (30^{63} \times 29 + ... + 30 \times 29^{63})}{30^{64} + 29^{64}}3064+2964(3064+2964)+(3063×29+...+30×2963)​

=1+(3063×29+...+30×2963)3064+2964>1= 1 + \dfrac{(30^{63} \times 29 + ... + 30 \times 29^{63})}{30^{64} + 29^{64}} \gt 1=1+3064+2964(3063×29+...+30×2963)​>1

Answer: (4) R >
1.01.01.0

Additionally, to improve your speed in answering questions, it is best if you memorise the following
(1) Multiplication Tables from
111 to 151515; and
(2) Squares and higher powers listed below provided in
4.24.24.2 and 4.34.34.3.

4.2 Squares

12=11^2 = 112=1 92=819^2 = 8192=81 172=28917^2 = 289172=289 252=62525^2 = 625252=625
22=42^2 = 422=4 102=10010^2 = 100102=100 182=32418^2 = 324182=324 262=67626^2 = 676262=676
32=93^2 = 932=9 112=12111^2 = 121112=121 192=36119^2 = 361192=361 272=72927^2 = 729272=729
42=164^2 = 1642=16 122=14412^2 = 144122=144 202=40020^2 = 400202=400 282=78428^2 = 784282=784
52=255^2 = 2552=25 132=16913^2 = 169132=169 212=44121^2 = 441212=441 292=84129^2 = 841292=841
62=366^2 = 3662=36 142=19614^2 = 196142=196 222=48422^2 = 484222=484 302=90030^2 = 900302=900
72=497^2 = 4972=49 152=22515^2 = 225152=225 232=52923^2 = 529232=529 312=96131^2 = 961312=961
82=648^2 = 6482=64 162=25616^2 = 256162=256 242=57624^2 = 576242=576 322=102432^2 = 1024322=1024

4.3 Higher Powers

21=22^1 = 221=2 22=42^2 = 422=4 23=82^3 = 823=8 24=162^4 = 1624=16
25=322^5 = 3225=32 26=642^6 = 6426=64 27=1282^7 = 12827=128 28=2562^8 = 25628=256
29=5122^9 = 51229=512 210=10242^{10} = 1024210=1024 211=20482^{11} = 2048211=2048 212=40962^{12} = 4096212=4096
31=33^1 = 331=3 32=93^2 = 932=9 33=273^3 = 2733=27 34=813^4 = 8134=81
35=2433^5 = 24335=243 36=7293^6 = 72936=729 37=21873^7 = 218737=2187 38=65613^8 = 656138=6561
41=44^1 = 441=4 42=164^2 = 1642=16 43=644^3 = 6443=64 44=2564^4 = 25644=256
45=10244^5 = 102445=1024 46=40964^6 = 409646=4096
51=55^1 = 551=5 52=255^2 = 2552=25 53=1255^3 = 12553=125 54=6255^4 = 62554=625
55=31255^5 = 312555=3125 56=156255^6 = 1562556=15625
61=66^1 = 661=6 62=366^2 = 3662=36 63=2166^3 = 21663=216 64=12966^4 = 129664=1296
71=77^1 = 771=7 72=497^2 = 4972=49 73=3437^3 = 34373=343 74=24017^4 = 240174=2401
81=88^1 = 881=8 82=648^2 = 6482=64 83=5128^3 = 51283=512 84=40968^4 = 409684=4096
91=99^1 = 991=9 92=819^2 = 8192=81 93=7299^3 = 72993=729 94=65619^4 = 656194=6561
111=1111^1 = 11111=11 112=12111^2 = 121112=121 113=133111^3 = 1331113=1331 114=1464111^4 = 14641114=14641
121=1212^1 = 12121=12 122=14412^2 = 144122=144 123=172812^3 = 1728123=1728

Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock