+91 9600 121 800

Plans

Dashboard

Daily & Speed

Quant

Verbal

DILR

Compete

Free Stuff

calendarBack
Quant

/

Arithmetic I

/

Proportion & Variation

Proportion And Variation

MODULES

Basics of Proportion
Continued Proportion
Componedo & Dividendo
Sum Rule
Other Proportions
Basics of Variation
Combined Variation
Past Questions

CONCEPTS & CHEATSHEET

Concept Revision Video

PRACTICE

Proportion & Variation : Level 1
Proportion & Variation : Level 2
Proportion & Variation : Level 3
ALL MODULES

CAT 2025 Lesson : Proportion & Variation - Other Proportions

bookmarked

1.3.4 Circular Proportion

Property: If
ab=bc=ca\dfrac{a}{b} = \dfrac{b}{c} = \dfrac{c}{a}ba​=cb​=ac​, then a=b=ca = b = ca=b=c

Example 8

If 3x+62y+6=y+36=4x+2\dfrac{3x + 6}{2y + 6} = \dfrac{y + 3}{6} = \dfrac{4}{x + 2}2y+63x+6​=6y+3​=x+24​, what is the value of x+yx + yx+y?

Solution

3x+62y+6=y+36=4x+2\dfrac{3x + 6}{2y + 6} = \dfrac{y + 3}{6} = \dfrac{4}{x + 2}2y+63x+6​=6y+3​=x+24​

⇒3x+62y+6=2y+612=123x+6⇒\dfrac{3x + 6}{2y + 6} = \dfrac{2y + 6}{12} = \dfrac{12}{3x + 6}⇒2y+63x+6​=122y+6​=3x+612​

∴
3x+6=2y+6=123x + 6 = 2y + 6 = 123x+6=2y+6=12
⇒x=2⇒x = 2⇒x=2 and y=3y = 3y=3
∴
x+y=5x + y = 5x+y=5

Answer:
555


1.4 Common Approach to solving

Two common ways to solve questions are substitution and equating to a constant,
k\bm{k}k.

1.4.1 Substitution

This method is useful when we do not have an idea on how to proceed. We substitute values that satisfy the equations.

Example 9

If a2b+c=b2c+a=c2a+b\dfrac{a}{2b + c} = \dfrac{b}{2c + a} = \dfrac{c}{2a + b}2b+ca​=2c+ab​=2a+bc​, then the value of 4b+5c3a\dfrac{4b + 5c}{3a}3a4b+5c​ could be
(1) 111           (2) 333           (3) 13\dfrac{1}{3}31​           (4) 0.30.30.3          

Solution

The given identity of
a2b+c=b2c+a=c2a+b\dfrac{a}{2b + c} = \dfrac{b}{2c + a} = \dfrac{c}{2a + b}2b+ca​=2c+ab​=2a+bc​ is true when a=b=c.a = b = c.a=b=c.

∴ Let
a=b=c=1a = b = c = 1a=b=c=1

4b+5c3a=93=3\dfrac{4b + 5c}{3a} = \dfrac{9}{3} = 33a4b+5c​=39​=3

Answer:(2)
333


1.4.2 Equating to k\bm{k}k

When the identities are multiplied or squared, then we can equate the identities to a constant
k\bm{k}k and solve.

Example 10

If ab=cd\dfrac{a}{b} = \dfrac{c}{d}ba​=dc​, then 3ac−2bd3ac+2bd=\dfrac{3ac - 2bd}{3ac + 2bd} =3ac+2bd3ac−2bd​= ?
(1) acbd\dfrac{ac}{bd}bdac​           (2) 3ac2bd\dfrac{3ac}{2bd}2bd3ac​           (3) 3a−2b3a+2b\dfrac{3a - 2b}{3a + 2b}3a+2b3a−2b​           (4) 3c2−2d23c2+2d2\dfrac{3c^{2} - 2d^{2}}{3c^{2} + 2d^{2}}3c2+2d23c2−2d2​          

Solution

Let
k=ab=cdk = \dfrac{a}{b} = \dfrac{c}{d}k=ba​=dc​

Then
k2=acbd=a2b2=c2d2k^{2} = \dfrac{ac}{bd} = \dfrac{a^{2}}{b^{2}} = \dfrac{c^{2}}{d^{2}}k2=bdac​=b2a2​=d2c2​

Value will remain the same if
acacac and bdbdbd can be replaced by a2a^{2}a2 and b2b^{2}b2 or c2c^{2}c2 and d2d^{2}d2respectively.

∴
3ac−2bd3ac+2bd=3c2−2d23c2+2d2\dfrac{3ac - 2bd}{3ac + 2bd} = \dfrac{3c^{2} - 2d^{2}}{3c^{2} + 2d^{2}}3ac+2bd3ac−2bd​=3c2+2d23c2−2d2​

Answer: (4)
3c2−2d23c2+2d2\dfrac{3c^{2} - 2d^{2}}{3c^{2} + 2d^{2}}3c2+2d23c2−2d2​

Note: Alternatively, you can substitute values. However, the stated approach saves time.


Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock