+91 9600 121 800

Plans

Dashboard

Daily & Speed

Quant

Verbal

DILR

Compete

Free Stuff

calendarBack
Quant

/

Arithmetic I

/

Proportion & Variation

Proportion And Variation

MODULES

Basics of Proportion
Continued Proportion
Componedo & Dividendo
Sum Rule
Other Proportions
Basics of Variation
Combined Variation
Past Questions

CONCEPTS & CHEATSHEET

Concept Revision Video

PRACTICE

Proportion & Variation : Level 1
Proportion & Variation : Level 2
Proportion & Variation : Level 3
ALL MODULES

CAT 2025 Lesson : Proportion & Variation - Past Questions

bookmarked

Past Questions

Question 1

Let a,b,c,da, b, c, da,b,c,d and eee be integers such that a=6b=12ca = 6b = 12ca=6b=12c, and 2b=9d=12e2b = 9d = 12e2b=9d=12e. Then which of the following pairs contains a number that is not an integer?
[CAT 2003 R]

[a27,be][ \dfrac{a}{27} , \dfrac{b}{e} ][27a​,eb​]
[a36,ce][ \dfrac{a}{36} , \dfrac{c}{e} ][36a​,ec​]
[a12,bd18][ \dfrac{a}{12} , \dfrac{bd}{18} ][12a​,18bd​]
[a6,cd][ \dfrac{a}{6} , \dfrac{c}{d} ][6a​,dc​]

Observation/Strategy

111) The two sets of equations have the bbb term in common. A combined ratio can be written by equating the equations to a constant KKK.

Let
a=6b=12c=Ka = 6b = 12c = Ka=6b=12c=K

⇒
a=K,b=K6,c=K12a = K, b = \dfrac{K}{6}, c = \dfrac{K}{12}a=K,b=6K​,c=12K​

∴
a:b:c=K:K6:K12=12:2:1⟶(1)a : b : c = K : \dfrac{K}{6} : \dfrac{K}{12} = 12 : 2 : 1 \longrightarrow (1)a:b:c=K:6K​:12K​=12:2:1⟶(1)

Let
2b=9d=12e=M2b = 9d = 12e = M 2b=9d=12e=M
⇒
b=M2,d=M9,e=M12b = \dfrac{M}{2}, d = \dfrac{M}{9}, e = \dfrac{M}{12}b=2M​,d=9M​,e=12M​

∴
b:d:e=M2:M9:M12=18:4:3⟶(2)b : d : e = \dfrac{M}{2} : \dfrac{M}{9} : \dfrac{M}{12} = 18 : 4 : 3 \longrightarrow (2)b:d:e=2M​:9M​:12M​=18:4:3⟶(2)

(1)(1)(1) can be written as a:b:c=108:18:9⟶(3)a : b : c = 108 : 18 : 9 \longrightarrow (3)a:b:c=108:18:9⟶(3)

Combining
(2)(2)(2) and (3)(3)(3),
a:b:c:d:e=108:18:9:4:3a : b : c : d : e = 108 : 18 : 9 : 4 : 3a:b:c:d:e=108:18:9:4:3

cd=94=2.25\dfrac{c}{d} = \dfrac{9}{4} = 2.25dc​=49​=2.25 is not an integer.

Answer: (
444) [a6,cd][ \dfrac{a}{6} , \dfrac{c}{d} ][6a​,dc​]

Question 2

The Howrah-Puri express can move at 454545 km/hour without its rake, and the speed is diminished by a constant that varies as the square root of the number of wagons attached. If it is known that with 999 wagons, the speed is 303030 km/hour, what is the greatest number of wagons with which the train can just move?
[IIFT 2012]

636363
646464
808080
818181

Observation/Strategy

1) The reduction in speed (and not the speed itself) directly varies with the square root of the number of wagons.
2) To find the greatest number of wagons with which the train can move, we shall find the number of wagons when it just comes to a halt and then reduce by 111.

Let the
fff be the fall in speed and nnn be the number of wagons attached.

f=Knf = K \sqrt{n}f=Kn​
With
999 wagons, the fall in speed is 151515 km/hr.

15=K9⇒K=515 = K \sqrt{9} ⇒ K = 515=K9​⇒K=5

The train will come to a halt when
f=45\bm{f = 45}f=45.
⇒
45=5×n45 = 5 \times \sqrt{n}45=5×n​
⇒
n=81\bm{n = 81}n=81

With
818181 wagons, the train comes to a complete halt. Therefore, 81−1=81 - 1 =81−1= 80 is the greatest number of wagons with which the train will just be able to move.

Answer: (3)
808080

Question 3

If mn=43\dfrac{m}{n} = \dfrac{4}{3}nm​=34​ and rt=914\dfrac{r}{t} = \dfrac{9}{14}tr​=149​, the value of 3 mr−nt4 nt−7 mr\dfrac{3 \space mr - nt}{4 \space nt - 7 \space mr}4 nt−7 mr3 mr−nt​ is:
[FMS 2011]

−512-5 \dfrac{1}{2}−521​
−1114- \dfrac{11}{14}−1411​
−114-1 \dfrac{1}{4}−141​
1114\dfrac{11}{14}1411​

Observation/Strategy

1) The answer options are a constant. So, we can just substitute values for the variables.
2) The variables substituted can be directly taken from the ratios given.

Let m,n,rm, n, rm,n,r and ttt be 4,3,94, 3, 94,3,9 and 141414 respectively.

3 mr−nt4 nt−7 mr=(3×4×9)−(3×14)(4×3×14)−(7×4×9)\dfrac{3 \space mr - nt}{4 \space nt - 7 \space mr} = \dfrac{(3 \times 4 \times 9) - (3 \times 14)}{(4 \times 3 \times 14) - (7 \times 4 \times 9)}4 nt−7 mr3 mr−nt​=(4×3×14)−(7×4×9)(3×4×9)−(3×14)​

=108−42168−252= \dfrac{108 - 42}{168 - 252}=168−252108−42​

=−6684=−1114= - \dfrac{66}{84} = - \dfrac{11}{14}=−8466​=−1411​

Answer: (3)
−1114- \dfrac{11}{14}−1411​

Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock