3.5 Changes to Roots
Where α and β are the roots of a quadratic equation ax2+bx+c=0, and k is a constant,
For the roots |
The quadratic equation is |
(α+k) and (β+k) |
a(x−k)2+b(x−k)+c=0 |
(α−k) and (β−k) |
a(x+k)2+b(x+k)+c=0 |
(αk) and (βk) |
a(kx)2+b(kx)+c=0 |
(kα) and (kβ) |
a(xk)2+b(xk)+c=0 |
(α1) and (β1) |
cx2+bx+a=0 |
Ratio of Roots: For a quadratic equation
ax2+bx+c=0, if the ratio of roots, i.e., α:β=p:q,
then b2pq=ac(p+q)2
Example 9
If α and β are the roots of the quadratic equation 2x2+3x−4=0, what is the equation whose roots are
(I) 2α+5 and 2β+5 ?
(II) two-third the reciprocal of α and β?
Solution
Case I: Equation whose roots are
α and β ⇒ 2x2+3x−4=0
Equation whose roots are (α+5) and (β+5) ⇒ 2(x−5)2+3(x−5)−4=0
⇒ 2x2−17x+31=0
Equation whose roots are (2α+5) and (2β+5) ⇒ 2(2x)2−17(2x)+31=0
⇒ 8x2−34x+31=0
Case II: Equation whose roots are α1 and β1 ⇒ −4x2+3x+2=0
⇒ 4x2−3x−2=0
Equation whose roots are (3α2) and (3β2) ⇒ 4(23×x)−2=0
⇒ 18x2−9x−4=0
Answer: (I) 8x2−34x+31=0; (II) 18x2−9x−4=0
Example 10
In the equation 4x2−12x+m=0, if one root is 5 times the other, then m= ?
Solution
Ratio of roots
=p:q=1:5
b2pq=ac(p+q)2
⇒ (−12)2×1×5=4m(1+5)2
⇒ 144×5=4m×36
⇒ m=5
Answer: 5
3.6 Applying Binomial Identities to find new Equation
Example 11
If α and β are the roots of the equation x2+5x−3=0, what is the equation whose roots are
(I) α21 and β21?
(II) βα2 and αβ2?
Solution
Sum of roots
=α+β=−5
Product of roots =αβ=−3
Case I: Where roots are α21 and β21
Sum of roots =α21+β21=(α2β2)α2+β2 =(αβ)2(α+β)2−2αβ=(−3)2(−5)2−2×−3
=931
Product of roots =α21×β21=(αβ)21=91
New Equation ⇒ x2−931x+91=0 ⇒ 9x2−31x+1=0
Case II: Where roots are βα2 and αβ2
Sum of roots =βα2+αβ2=αβα3+β3 =αβ(α+β)3−3αβ(α+β) =−3(−5)3−3×−3×−5=3170
Product of roots =βα2×αβ2=αβ=−3
New Equation ⇒ x2−3170x−3=0 ⇒ 3x2−170x−9=0
Answer: (I) 9x2−31x+1=0; (II) 3x2−170x−9=0