calendarBack
Quant

/

Algebra

/

Quadratic Equations
ALL MODULES

CAT 2025 Lesson : Quadratic Equations - Concepts & Cheatsheet

bookmarked
Note: The video for this module contains a summary of all the concepts covered in this lesson. The video would serve as a good revision. Please watch this video in intervals of a few weeks so that you do not forget the concepts. Below is a cheatsheet that includes all the formulae but not necessarily the concepts covered in the video.

9. Cheatsheet

11) A quadratic expression with 11 variable is of the form ax2+bx+cax^{2} + bx + c, where a0a \ne 0.

2) Where
α\alpha and β\beta are the roots, the quadratic equation formed is (xα)(xβ)=0(x - \alpha) (x - \beta) = 0

33) Formula for roots: x=b±b24ac2ax = \dfrac{-b \pm \sqrt{b^{2} - 4ac}}{2a}, Discriminant: D=b24acD = b^{2} - 4ac

Discriminant Nature of Roots
D>0D \gt 0 Two real and distinct roots.
D=0D = 0 Two real and equal roots
D<0D \lt 0 Two imaginary roots


4)4) For f(x)=ax2+bx+cf(x) = ax^{2} + bx + c, Sum of roots =α+β=ba= \alpha + \beta = \dfrac{-b}{a} and Product of roots =αβ=ca= \alpha \beta = \dfrac{c}{a}

5)5) Changes to Roots: Where α\alpha and β\beta are the roots of ax2+bx+c=0ax^{2} + bx + c = 0, and kk is a constant,

For the roots The quadratic equation is
(α+k)(\alpha + k) and (β+k)(\beta + k) a(xk)2+b(xk)+c=0a(x - k)^{2} + b(x - k) + c = 0
(αk)(\alpha - k) and (βk)(\beta - k) a(x+k)2+b(x+k)+c=0a(x + k)^{2} + b(x + k) + c = 0
(αk)(\alpha k) and (βk)(\beta k) a(xk)2+b(xk)+c=0a \left(\dfrac{x}{k} \right)^{2} + b \left(\dfrac{x}{k} \right) + c = 0
(αk)\left(\dfrac{\alpha}{k} \right) and (βk)\left(\dfrac{\beta}{k} \right) a(xk)2+b(xk)+c=0a(xk)^{2} + b(xk) + c = 0
(1α)\left(\dfrac{1}{\alpha} \right) and (1β)\left(\dfrac{1}{\beta} \right) cx2+bx+a=0cx^{2} + bx + a = 0


Ratio of Roots: For a quadratic equation ax2+bx+c=0\bm{ax^{2} + bx + c = 0}, if the ratio of roots, i.e., α:β=p:q,\bm{\alpha : \beta = p : q,} then b2pq=ac(p+q)2\bm{b^{2}pq = ac (p + q)^{2}}

7)7) Cubic Equation: If α,β\alpha, \beta and γ\gamma are the roots of the equation ax3+bx2+cx+d=0ax^{3} + bx^{2} + cx + d = 0, then

α+β+γ=ba\alpha + \beta + \gamma = \dfrac{-b}{a} αβ+βγ+γα=ca\alpha \beta + \beta \gamma + \gamma \alpha = \dfrac{c}{a} αβγ=da\alpha \beta \gamma = \dfrac{-d}{a}


8)8) Biquadratic Equation: If α,β,γ\alpha, \beta, \gamma and δ\delta are the roots of the equation ax4+bx3+cx2+dx+e=0ax^{4} + bx^{3} + cx^{2} + dx + e = 0,

α+β+γ+δ=ba\alpha + \beta + \gamma + \delta = \dfrac{-b}{a} αβ+αγ+αδ+βγ+βδ+γδ=ca\alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta = \dfrac{c}{a} αβγ+αβδ+αγδ+βγδ=da\alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = \dfrac{-d}{a} αβγδ=ea\alpha \beta \gamma \delta = \dfrac{e}{a}


9)9) Descarte's rule: Number of sign changes in f(x)f(x) and f(x)f(-x) are the maximum number of positive and negative real roots of a polynomial. These numbers vary by a multiple of 22.

10)10) Minimum or Maximum value of f(x)=(4acb2)4af(x) = \dfrac{(4ac - b^{2})}{4a} at x=b2ax = \dfrac{-b}{2a}

Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock