calendarBack
Quant

/

Algebra

/

Quadratic Equations
ALL MODULES

CAT 2025 Lesson : Quadratic Equations - Formulation & Completion of Squares

bookmarked

3.4.2 Formula Method

This method can be used when factorisation becomes difficult, i.e., you do not find roots by examining the sum and product of roots. This is especially the case when the roots are surds.

x=b±D2a=b±b24ac2ax = \dfrac{-b \pm \sqrt{D}}{2a} = \dfrac{-b \pm \sqrt{b^{2} - 4ac}}{2a}

Therefore, if
D=0D = 0, then roots of the equation are real and equal, which is equal to b2a\dfrac{-b}{2a}; and if DD is a square of a rational number, then the roots will be rational numbers.

Example 7

What are the roots of the equations x2+x1=0x^{2} + x - 1 = 0 and 6x27x+2=06x^{2} - 7x + 2 = 0?

Solution

x2+x1=0x^{2} + x - 1 = 0 (a=1,b=1,c=1)(a = 1, b = 1, c = -1)

x=b±b24ac2a=1±124×1×12×1 x = \dfrac{-b \pm \sqrt{b^{2} - 4ac}}{2a} = \dfrac{-1 \pm \sqrt{1^{2} - 4 \times 1 \times -1}}{2 \times 1} =1±52= \dfrac{-1 \pm \sqrt{5}}{2}

x=1+52,152 x = \dfrac{-1 + \sqrt{5}}{2}, \dfrac{-1 - \sqrt{5}}{2}

6x27x+2=06x^{2} - 7x + 2 = 0 (a=6,b=7,c=2)(a = 6, b = -7, c = 2)

x=(7)±49482×6 x = \dfrac{-(-7) \pm \sqrt{49 - 48}}{2 \times 6} =7±112=612,812=12,23= \dfrac{7 \pm 1}{12} = \dfrac{6}{12}, \dfrac{8}{12} = \dfrac{1}{2}, \dfrac{2}{3}

Answer:
12,23\dfrac{1}{2}, \dfrac{2}{3}


3.4.3 Completion of Squares

This can be used as an alternative to the Formula Method to enhance your speed. This should be used only when a is a perfect square and b is even, otherwise, finding the roots would become a tedious process.

Example 8

What are the roots of the equation 4x28x+3=04x^{2} - 8x + 3 = 0 and 9x2+24x13=09x^{2} + 24x - 13 = 0?

Solution

Here, we express this quadratic equation as a22ab+b2a^{2} - 2ab + b^{2}.

4x28x+3=04x^{2} - 8x + 3 = 0
(2x)2(2×2x×2)+221=0 (2x)^{2} - (2 \times 2x \times 2) + 2^{2} - 1 = 0
(2x2)2=1 (2x - 2)^{2} = 1     ⇒     2x2=±1 2x - 2 = \pm 1     ⇒     2x=3,1 2x = 3, 1     ⇒     3,1 3, 1     ⇒     x=32,12 x = \dfrac{3}{2}, \dfrac{1}{2}

9x2+24x13=09x^{2} + 24x - 13 = 0
(3x)2+(2×3x×4)+4229=0 (3x)^{2} + (2 \times 3x \times 4) + 4^{2} - 29 = 0
(3x+4)2=29(3x + 4)^{2} = 29     ⇒     3x+4=±29 3x + 4 = \pm \sqrt{29}     ⇒     x=4+293,4293 x = \dfrac{-4 + \sqrt{29}}{3}, \dfrac{-4 - \sqrt{29}}{3}

Answer:
4+293,4293\dfrac{-4 + \sqrt{29}}{3}, \dfrac{-4 - \sqrt{29}}{3}


Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock