+91 9600 121 800

Plans

Dashboard

Daily & Speed

Quant

Verbal

DILR

Compete

Free Stuff

calendarBack
Quant

/

Algebra

/

Quadratic Equations

Quadratic Equations

MODULES

Basics of Polynomial & Quadratic Equations
Discriminant & Graphical Representation
Sum & Product of Roots
Factorisation Method
Formulation & Completion of Squares
Changes to Roots
Mistakes in Roots, Common Roots & Squaring
Infinite Series & Transposed
Other Types
Higher Order Equations
Synthetic Division & Remainder Theorem
Maxima, Minima & Descrates Rule
Past Questions

CONCEPTS & CHEATSHEET

Concept Revision Video

SPEED CONCEPTS

Quadratic Equations 1
-/10
Quadratic Equations 2
-/10
Quadratic Equations 3
-/10

PRACTICE

Quadratic Equations : Level 1
Quadratic Equations : level 2
Quadratic Equations : level 3
ALL MODULES

CAT 2025 Lesson : Quadratic Equations - Higher Order Equations

bookmarked

5. Higher Order Equations

An equation of the form is
a0xn+a1xn−1+a2xn−2+....+an−2x2+an−1x1+an=0a_{0}x^{n} + a_{1}x^{n - 1} + a_{2}x^{n - 2} + .... + a_{n -2}x^{2} + a_{n - 1}x^{1} + a_{n} = 0a0​xn+a1​xn−1+a2​xn−2+....+an−2​x2+an−1​x1+an​=0 called a nthn^{\text{th}}nth degree equation where a0,a1,a3,....,an−1,ana_{0}, a_{1}, a_{3}, ...., a_{n - 1}, a_{n}a0​,a1​,a3​,....,an−1​,an​ are real numbers . A nthn^{\text{th}}nth degree equation will have nnn roots.

5.1 Quadratic Equation

We have learnt this in the earlier section.

If
α\alphaα and β\betaβ are the roots of an equation, then
(x−α)(x−β)=0(x - \alpha)(x - \beta) = 0(x−α)(x−β)=0
⇒
x2−(α+β)x+(αβ)=0⟶(1) x^{2} - (\alpha + \beta)x + (\alpha \beta) = 0 \longrightarrow (1)x2−(α+β)x+(αβ)=0⟶(1)

General form of quadratic equation is
ax2+bx+c=0ax^{2} + bx + c = 0ax2+bx+c=0

⇒
x2+bax+ca=0⟶(2) x^{2} + \dfrac{b}{a}x + \dfrac{c}{a} = 0 \longrightarrow (2)x2+ab​x+ac​=0⟶(2)

Comparing coefficients of variables and the constant in
(1)(1)(1) and (2)(2)(2), we note the following.

α+β=−ba\alpha + \beta = \dfrac{-b}{a}α+β=a−b​ αβ=ca\alpha \beta = \dfrac{c}{a}αβ=ac​


The above method has been applied to form the identities for cubic and biquadratic equations.

5.2 Cubic Equation

If α,β\alpha, \betaα,β and γ\gammaγ are the roots of the equation ax3+bx2+cx+d=0ax^{3} + bx^{2} + cx + d = 0ax3+bx2+cx+d=0, then

α+β+γ=−ba\alpha + \beta + \gamma = \dfrac{-b}{a}α+β+γ=a−b​ αβ+βγ+γα=ca\alpha \beta + \beta \gamma + \gamma \alpha = \dfrac{c}{a}αβ+βγ+γα=ac​ αβγ=−da\alpha \beta \gamma = \dfrac{-d}{a}αβγ=a−d​


5.3 Bi-quadratic Equation

If α,β,γ\alpha, \beta, \gammaα,β,γ and δ\deltaδ are the roots of the equation ax4+bx3+cx2+dx+e=0ax^{4} + bx^{3} + cx^{2} + dx + e = 0ax4+bx3+cx2+dx+e=0,

α+β+γ+δ=−ba\alpha + \beta + \gamma + \delta = \dfrac{-b}{a}α+β+γ+δ=a−b​ αβ+αγ+αδ+βγ+βδ+γδ=ca\alpha \beta + \alpha \gamma + \alpha \delta + \beta \gamma + \beta \delta + \gamma \delta = \dfrac{c}{a}αβ+αγ+αδ+βγ+βδ+γδ=ac​ αβγ+αβδ+αγδ+βγδ=−da\alpha \beta \gamma + \alpha \beta \delta + \alpha \gamma \delta + \beta \gamma \delta = \dfrac{-d}{a}αβγ+αβδ+αγδ+βγδ=a−d​ αβγδ=ea\alpha \beta \gamma \delta = \dfrac{e}{a}αβγδ=ae​


Example 23

If p,qp, qp,q and rrr are the roots of the equation 2x3−3x2−23x+12=02x^{3} - 3x^{2} - 23x + 12 = 02x3−3x2−23x+12=0, then 1pq+1qr+1rp=\dfrac{1}{pq} + \dfrac{1}{qr} + \dfrac{1}{rp} =pq1​+qr1​+rp1​= ?

(1)
−0.25-0.25−0.25            (2) −0.5-0.5−0.5            (3) 0.250.250.25            (4) 0.50.50.5           

Solution

1pq+1qr+1rp=p+q+rpqr\dfrac{1}{pq} + \dfrac{1}{qr} + \dfrac{1}{rp} = \dfrac{p + q + r}{pqr}pq1​+qr1​+rp1​=pqrp+q+r​

In the cubic equation,
Sum of roots
=p+q+r=−ba=32= p + q + r = \dfrac{-b}{a} = \dfrac{3}{2}=p+q+r=a−b​=23​

Product of roots
=pqr=−da=−122=−6= pqr = \dfrac{-d}{a} = \dfrac{-12}{2} = -6=pqr=a−d​=2−12​=−6

∴
p+q+rpqr=32×1−6=−0.25\dfrac{p + q + r}{pqr} = \dfrac{3}{2} \times \dfrac{1}{-6} = -0.25pqrp+q+r​=23​×−61​=−0.25

Answer:
(1) −0.25(1) \space -0.25(1) −0.25


Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock