+91 9600 121 800

Plans

Dashboard

Daily & Speed

Quant

Verbal

DILR

Compete

Free Stuff

calendarBack
Quant

/

Algebra

/

Quadratic Equations

Quadratic Equations

MODULES

Basics of Polynomial & Quadratic Equations
Discriminant & Graphical Representation
Sum & Product of Roots
Factorisation Method
Formulation & Completion of Squares
Changes to Roots
Mistakes in Roots, Common Roots & Squaring
Infinite Series & Transposed
Other Types
Higher Order Equations
Synthetic Division & Remainder Theorem
Maxima, Minima & Descrates Rule
Past Questions

CONCEPTS & CHEATSHEET

Concept Revision Video

SPEED CONCEPTS

Quadratic Equations 1
-/10
Quadratic Equations 2
-/10
Quadratic Equations 3
-/10

PRACTICE

Quadratic Equations : Level 1
Quadratic Equations : level 2
Quadratic Equations : level 3
ALL MODULES

CAT 2025 Lesson : Quadratic Equations - Maxima, Minima & Descrates Rule

bookmarked

6. Descartes' rule

Where
f(x)f(x)f(x) is a polynomial and the terms are arranged in descending order of their powers,
1)1)1) Maximum number of positive real roots of f(x)f(x)f(x) equals the number of sign changes in coefficients of subsequent terms of f(x).
222) Maximum number of negative real roots of f(x) equals the number of sign changes in coefficients of subsequent terms of f(-x).
333) The actual number of positive or negative real roots can differ from their respective maximum values by a multiple of 2.

For instance, if the number of sign changes of
f(x)f(x)f(x) is 777, then number of positive real roots can be 7,5,37, 5, 37,5,3 or 111. Likewise, if the number of sign changes of f(−x)f(-x)f(−x) is 666, then number of negative real roots can be 6,4,26, 4, 26,4,2 or 000.

Example 26

Which of the following can be the number of negative real roots if x7+ax5−bx4+cx2+x+5=0x^{7} + ax^{5} - bx^{4} + cx^{2} + x + 5 = 0x7+ax5−bx4+cx2+x+5=0, where a,ba, ba,b and ccc are positive real numbers?

(1)
000            (2) 111            (3) 222            (4) 555           

Solution

Where f(x)=x7+ax5−bx4+cx2+x+5=0f(x) = x^{7} + ax^{5} - bx^{4} + cx^{2} + x + 5 = 0f(x)=x7+ax5−bx4+cx2+x+5=0,
f(−x)=−x7−ax5−bx4+cx2−x+5f(-x) = -x^{7} - ax^{5} - bx^{4} + cx^{2} - x + 5f(−x)=−x7−ax5−bx4+cx2−x+5

As
a,ba, ba,b and ccc are positive, the sign changes in the term are − − − + − +-\space -\space -\space +\space -\space +− − − + − +

The sign has changed
333 times, i.e., in the x2,xx^{2}, xx2,x and constant terms.

∴ Maximum number of negative roots is
333.

Number of negative real roots will be equal to or lower than
333 by a multiple of 222.

Possible number of negative real roots are
333 and 111. Only the number 111 is there in the answer options.

Answer:
(2) 1(2) \space 1(2) 1


7. Maxima and Minima of Quadratic Expression

A quadratic expression f(x)=ax2+bx+cf(x) = ax^{2} + bx + cf(x)=ax2+bx+c, where a>0a \gt 0a>0 forms a U-shaped curve.

Here, the minimum value of
f(x)f(x)f(x) is at x=−b2ax = \dfrac{-b}{2a}x=2a−b​

And, the minimum value of
f(x)=(4ac−b2)4af(x) = \dfrac{(4ac - b^{2})}{4a}f(x)=4a(4ac−b2)​
A quadratic expression f(x)=ax2+bx+cf(x) = ax^{2} + bx + cf(x)=ax2+bx+c, where a<0a \lt 0a<0 forms an inverted U-shaped curve

Here, the maximum value of
f(x)f(x)f(x) is at x=−b2ax = \dfrac{-b}{2a}x=2a−b​

And, the maximum value of
f(x)=(4ac−b2)4af(x) = \dfrac{(4ac - b^{2})}{4a}f(x)=4a(4ac−b2)​


Note that
(4ac−b2)4a\dfrac{(4ac - b^{2})}{4a}4a(4ac−b2)​ is the expression we get by substituting x=−b2ax = \dfrac{-b}{2a}x=2a−b​ in f(x)f(x)f(x).

Example 27

What is the maximum value of f(x)=−2x2−5x+6f(x) = -2x^{2} - 5x + 6f(x)=−2x2−5x+6?

Solution

Maximum value of f(x)=(4ac−b2)4a=(4×−2×6−(−5)2)4×−2=−48−25−8=738f(x) = \dfrac{(4ac - b^{2})}{4a} = \dfrac{(4 \times -2 \times 6 - (-5)^{2})}{4 \times -2} = \dfrac{-48 - 25}{-8} = \dfrac{73}{8}f(x)=4a(4ac−b2)​=4×−2(4×−2×6−(−5)2)​=−8−48−25​=873​

Answer:
738\dfrac{73}{8}873​


Example 28

At what value of xxx, does f(x)=x2−5x+6f(x) = x^{2} - 5x + 6f(x)=x2−5x+6 attain minimum?

Solution

As a=1a = 1a=1 is positive, this function will attain minimum.

f(x)f(x)f(x) will attain minimum at x=−b2a=52x = \dfrac{-b}{2a} = \dfrac{5}{2}x=2a−b​=25​

Answer:
52\dfrac{5}{2}25​


Example 29

If α\alphaα and β\betaβ are the roots of the equation x2−3mx+m−5=0x^{2} - 3mx + m - 5 = 0x2−3mx+m−5=0, then what is the minimum value of α2+β2+5αβ\alpha^{2} + \beta^{2} + 5 \alpha \betaα2+β2+5αβ?

Solution

Sum of roots =α+β=3m= \alpha + \beta = 3m=α+β=3m
Product of roots
=αβ=m−5= \alpha \beta = m - 5=αβ=m−5

α2+β2+5αβ\alpha^{2} + \beta^{2} + 5 \alpha \betaα2+β2+5αβ
⇒
α2+β2+2αβ+3αβ \alpha^{2} + \beta^{2} + 2 \alpha \beta + 3 \alpha \betaα2+β2+2αβ+3αβ
⇒
(α+β)2+3αβ (\alpha + \beta)^{2} + 3 \alpha \beta(α+β)2+3αβ
⇒
9m2+3m−15 9m^{2} + 3m - 159m2+3m−15

Minimum value of this expression
=(4ac−b2)4a= \dfrac{(4ac - b^{2})}{4a}=4a(4ac−b2)​ =((4×9×−15)−32)4×9= \dfrac{((4 \times 9 \times -15) -3^{2})}{4 \times 9}=4×9((4×9×−15)−32)​ =−614= \dfrac{-61}{4}=4−61​

Answer:
−614\dfrac{-61}{4}4−61​


Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock