calendarBack
Quant

/

Numbers

/

Surds & Indices
ALL MODULES

CAT 2025 Lesson : Surds & Indices - Root of Surds

bookmarked

1.3 Square root of a quadratic surd

(a+b)2=a2+b2+2ab(a + b)^2 = a^2 + b^2 + 2ab

To find the square root of a quadratic surd, we express the surd in the form of
(a2+b2+2ab)(a^2 + b^2 + 2ab).
a2+b2a^2 + b^2 forms the rational part and 2ab2ab forms the irrational part.

Example 4

Find the square root of 9+459 + 4 \sqrt{5}

Solution

9+45=9+2209 + 4 \sqrt{5} = 9 + 2 \sqrt{20}
=4+5+24×5= 4 + 5 + 2 \sqrt{{4} \times {5}}
=(2)2+(5)2+2×2×5= (2)^2 + (\sqrt{5})^2 + 2 \times 2 \times \sqrt{5}
=(2+5)2= (2 + \sqrt{5})^2

9+45=(2+5)2=±(2+5)\therefore \sqrt{{9 + 4 \sqrt{5}}} = \sqrt{{(2 + \sqrt {5})^2}} = \pm(2 + \sqrt{5})

Answer:
±(2+5)\pm(2 + \sqrt{5})

Example 5

Find the square root of 1541415 - 4 \sqrt{14}

(1)
722\sqrt{7} - 2\sqrt{2}     (2) 76\sqrt{7} - \sqrt{6}     (3) 87\sqrt{8} - \sqrt{7}     (4) More than one of the above

Solution

Let x=15414=15256x = 15 - 4 \sqrt{14} = 15 - 2 \sqrt{56}
=7+827×8= 7 + 8 - 2 \sqrt{{7} \times {8}}
=(78)2= (\sqrt{7} - \sqrt{8})^2

x=(78)2=±(78)\sqrt{x} = \sqrt{(\sqrt{7} - {8})^2} = \pm(\sqrt{7} - \sqrt{8})

Option 1 =
722=78\sqrt{7} - 2\sqrt{2} = \sqrt{7} - \sqrt{8}, which is satisfied
Option 3 =
87=(78)\sqrt{8} - \sqrt{7} = - (\sqrt{7} - \sqrt{8}), which is also satisfied

Answer: (4) More than one of the above

Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock