+91 9600 121 800

Plans

Dashboard

Daily & Speed

Quant

Verbal

DILR

Compete

Free Stuff

calendarBack
Quant

/

Arithmetic II

/

Time & Speed

Time And Speed

MODULES

Basics of Ratios
Average Speed
Product Constancy
Relative Speed
Trains
Walking To & Fro
Circular Track
Boats, Races & Clock
Escalators
Past Questions

CONCEPTS & CHEATSHEET

Concept Revision Video

SPEED CONCEPTS

Time & Speed 1
-/10
Time & Speed 2
-/10
Time & Speed 3
-/10
Time & Speed 4
-/10

PRACTICE

Time & Speed : Level 1
Time & Speed : Level 2
Time & Speed : Level 3
ALL MODULES

CAT 2025 Lesson : Time & Speed - Concepts & Cheatsheet

bookmarked
Note: The video for this module contains a summary of all the concepts covered in this lesson. The video would serve as a good revision. Please watch this video in intervals of a few weeks so that you do not forget the concepts. Below is a cheatsheet that includes all the formulae but not necessarily the concepts covered in the video.

   12. Cheatsheet

1) When a distance \space  D  \space is covered at a speed of \space  S  \space at time \space  T, then

 \space  D = S×T, S = DTD \space = \space S \times T, \space S \space = \space \dfrac{D}{T}D = S×T, S = TD​ and T = DST \space = \space \dfrac{D}{S}T = SD​

      \space \space \space \space \space \space      1.1) Distance and Speed have a direct relationship, i.e. D∝SD \propto SD∝S

      \space \space \space \space \space \space      1.2) Distance and Time have a direct relationship, i.e. D∝TD \propto TD∝T

      \space \space \space \space \space \space      1.3) Speed and Time, however, have an inverse relationship, i.e. S∝1TS \propto \dfrac{1}{T}S∝T1​

          \space \space \space \space \space \space \space \space \space \space          1.3.1) If ratio of speed is S1:S2:S3S_1 : S_2 : S_3S1​:S2​:S3​, then ratio of time taken is 1S1:1S2:1S3 \dfrac{1}{S_1} : \dfrac{1}{S_2} : \dfrac{1}{S_3}S1​1​:S2​1​:S3​1​

2)
1 km/hr=518 m/s1 \space km/hr = \dfrac{5}{18} \space m/s1 km/hr=185​ m/s and 1 m/s=185 km/hr1 \space m/s = \dfrac{18}{5} \space km/hr1 m/s=518​ km/hr

3) Average Speed =
Total Distance CoveredTotal Time Taken\dfrac{Total \space Distance \space Covered}{Total \space Time \space Taken}Total Time TakenTotal Distance Covered​

      \space \space\space \space \space \space      3.1) When Time Taken are equal, then the average speed is the Arithmetic Mean of the Speeds.

      \space \space \space \space \space \space      3.2) When Distances are equal, then the average speed is the Harmonic Mean of the Speeds.

4) When Distance is constant,

      ∙ \space \space \space \space \space \space\bullet      ∙ if one of time or speed increases by ab \dfrac{a}{b}ba​ of itself, then the other decreases by
       ab+a \space \space \space \space \space \space \space \dfrac{a}{b + a}       b+aa​ of itself

      ∙ \space \space \space \space \space \space\bullet      ∙ if one of time or speed decreases by ab \dfrac{a}{b}ba​ of itself, then the other increases by
       ab−a \space \space \space \space \space \space \space \dfrac{a}{b - a}       b−aa​ of itself

5) Where
S1S_1S1​ and S2S_2S2​ are two speeds with S1 > S2S_1 \space > \space S_2S1​ > S2​

      ∙ \space \space \space \space \space \space\bullet      ∙ in opposite directions, Time taken = DistanceRelative Speed = DS1+S2=\space \dfrac{Distance}{Relative \space Speed} \space = \space \dfrac{D}{S_1 + S_2}= Relative SpeedDistance​ = S1​+S2​D​

      ∙ \space \space \space \space \space \space\bullet      ∙ in same direction, Time taken = DistanceRelative Speed = DS1−S2=\space \dfrac{Distance}{Relative \space Speed} \space = \space \dfrac{D}{S_1 - S_2}= Relative SpeedDistance​ = S1​−S2​D​

6) If a train of length l takes time t to pass an

      ∙ \space \space \space \space \space \space\bullet      ∙ object of negligible length at a speed s, then l=s×tl = s \times tl=s×t

      ∙ \space \space \space \space \space \space\bullet      ∙ object of length l2l_2l2​ at a speed sss, then l1+l2=s×tl_1 + l_2 = s \times tl1​+l2​=s×t

7) If a train of length
lll moving at speed s1s_1s1​1 takes time ttt to pass an

      ∙ \space \space \space \space \space \space\bullet      ∙ object of negligible length moving at speed s2s_2s2​, moving in opposite direction,
       l=(s1+s2)×t \space \space \space \space \space \space \space l = (s_1 + s_2) \times t       l=(s1​+s2​)×t

      ∙ \space \space \space \space \space \space\bullet      ∙ object of negligible length moving at speed s2s_2s2​, moving in same direction, then
       l=(s1−s2)×t \space \space \space \space \space \space \space l = (s_1 - s_2) \times t       l=(s1​−s2​)×t

8) If two trains of length
l1l_1l1​ and l2l_2l2​ moving at speeds of s1s_1s1​ and s2s_2s2​ respectively, take time ttt to cross each other

      ∙ \space \space \space \space \space \space\bullet      ∙ in opposite directions, then l1+l2=(s1+s2)×tl_1 + l_2 = (s_1 + s_2) \times t l1​+l2​=(s1​+s2​)×t

      ∙ \space \space \space \space \space \space\bullet      ∙ in same direction with s1>s2s_1 > s_2s1​>s2​, then l1+l2=(s1−s2)×tl_1 + l_2 = (s_1 - s_2) \times tl1​+l2​=(s1​−s2​)×t

9) Two people walking to and fro from two ends of a corridor of length
lll, when meeting for the nthn^{th}nth time, together cover a distance of (2n−1)l(2n - 1)l(2n−1)l

10) Two people running around circular track at speeds of
s1s_1s1​ and s2(s1>s2)s_2(s_1 > s_2)s2​(s1​>s2​) meet for nthn^{th}nth time,

      ∙ \space \space \space \space \space \space \bullet      ∙ when running in opposite directions, time taken =nls1+s2 = \dfrac{nl}{s_1 + s_2}=s1​+s2​nl​

      ∙ \space \space \space \space \space \space \bullet      ∙ when running in same directions, time taken =nls1−s2 = \dfrac{nl}{s_1 - s_2}=s1​−s2​nl​

11) Where
sss is the speed of the boat in still water and aaa is the speed of the stream, the relative speed while

      ∙ \space \space \space \space \space \space \bullet      ∙ travelling downstream =s+a= s + a=s+a

      ∙ \space \space \space \space \space \space \bullet      ∙ travelling upstream =s−a= s - a=s−a

12) Where
xxx and yyy are downstream and upstream speeds, boat speed =x+y2= \dfrac{x + y}{2}=2x+y​ and stream speed =x−y2= \dfrac{x - y}{2}=2x−y​

13)
 Downstream TimeUpstream Time = Upstream SpeedDownstream Speed\space \dfrac{Downstream \space Time}{Upstream \space Time} \space = \space \dfrac{Upstream \space Speed}{Downstream \space Speed} Upstream TimeDownstream Time​ = Downstream SpeedUpstream Speed​

14) The angles covered by the minute and hour hand for 1 hour and 1 minute are provided below.

           \space \space \space \space \space \space \space \space \space \space \space            Minute Hand Hour Hand
1 Hour 3600360^03600 30030^0300
1 Minute 606^060 0.500.5^00.50

Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock