2.2 Trigonometric Formulae
| S.No. |
Formulae |
Expansion |
| 1 |
sin2 θ + cos2 θ = 1 |
|
| 2 |
sin (A + B) |
sin A cos B + cos A sin B |
| 3 |
sin (A – B) |
sin A cos B – cos A sin B |
| 4 |
cos (A + B) |
cos A cos B – sin A sin B |
| 5 |
cos (A – B) |
cos A cos B + sin A sin B |
| 6 |
tan (A + B) |
1−tan A tan Btan A + tan B |
| 7 |
tan (A – B) |
1+tan A tan Btan A− tan B |
| 8 |
sin (A + B) + sin (A – B) |
2 sin A cos B |
| 9 |
sin (A + B) – sin (A – B) |
2 cos A sin B |
| 10 |
cos (A + B) + cos (A – B) |
2 cos A cos B |
| 11 |
cos (A – B) - cos (A + B) |
2 sin A sin B |
| 12 |
sin A + sin B |
2 sin 2A + B cos 2A − B |
| 13 |
sin A – sin B |
2 cos 2A + B sin 2A − B |
| 14 |
cos A + cos B |
2 cos 2A + B cos 2A − B |
| 15 |
cos A – cos B |
−2 sin 2A + B sin 2A − B |
Additional formulae derived from the above:
| S.No. |
Formulae |
Expansion |
1 |
sin 2A |
2 sin A cos A |
| 2 |
cos 2A |
cos2 A - sin2 A
= 1 – 2 sin2 A
= 2 cos2 A - 1 |
| 3 |
tan 2A |
1−tan2A2 tan A |
| 4 |
sin 3A |
3 sinA−4 sin3 A |
| 5 |
cos 3A |
4 cos3A−3 cosA |
| 6 |
tan 3A |
1−3tan3A3 tanA−tan3A |
Example 4
Find the following
(i) tan
75°       (ii) sin 15° + sin 75°
Solution
(i) tan75°=tan(45°+30°)=1−tan30°tan45°tan30°+tan45°=1−(31)×1(31)+1=3−13+1
= 3−13+1×3+13+1=(3)2−12(3+1)2=24+23=2+3
(ii) sin15°+sin75°=sin(45°−30°)+sin(45°+30°)
= sin45° cos30°−cos45° sin30°+sin45° cos30°+cos45°sin30°
=2(sin45°cos30°)=2(21×23)=23=23
Answer: (i) 2+3 (ii) 23
Example 5
cosec10°−3sec10°=
(1) 1      (2) 2     (3) 3     (4) 4
Solution
cosec10°−3sec10°=sin10°1−cos10°3=sin10°cos10°cos10°−3sin10°
=2×(21×cos10°−23×sin10°)×2sin10° cos10°2
= 2×(sin30° cos10°−cos30° sin10°)×sin20°2
= 2×sin(30°−10°)×sin20°2=4×sin20°sin20°=4
Answer: (4) 4