calendarBack
Quant

/

Geometry

/

Trigonometry & Coordinate
ALL MODULES

CAT 2025 Lesson : Trigonometry & Coordinate - Trigonometric Formulae

bookmarked

2.2 Trigonometric Formulae

S.No. Formulae Expansion
1 sin2^{2} θ + cos2^{2} θ = 1
2 sin (A + B) sin A cos B + cos A sin B
3 sin (A – B) sin A cos B – cos A sin B
4 cos (A + B) cos A cos B – sin A sin B
5 cos (A – B) cos A cos B + sin A sin B
6 tan (A + B) tan A + tan B1tan A tan B\dfrac{\mathrm{tan \ A \ + \ tan \ B}}{1 - \mathrm{tan \ A \ tan \ B}}
7 tan (A – B) tan A tan B1+tan A tan B\dfrac{\mathrm{tan \ A - \ tan \ B}}{1 + \mathrm{tan \ A \ tan \ B}}
8 sin (A + B) + sin (A – B) 2 sin A cos B
9 sin (A + B) – sin (A – B) 2 cos A sin B
10 cos (A + B) + cos (A – B) 2 cos A cos B
11 cos (A – B) - cos (A + B) 2 sin A sin B
12 sin A + sin B 22 sin A + B2\dfrac{\mathrm{A \ + \ B}}{2} cos A  B2\dfrac{\mathrm{A \ - \ B}}{2}
13 sin A – sin B 22 cos A + B2\dfrac{\mathrm{A \ + \ B}}{2} sin A  B2\dfrac{\mathrm{A \ - \ B}}{2}
14 cos A + cos B 22 cos A + B2\dfrac{\mathrm{A \ + \ B}}{2} cos A  B2\dfrac{\mathrm{A \ - \ B}}{2}
15 cos A – cos B 2-2 sin A + B2\dfrac{\mathrm{A \ + \ B}}{2} sin A  B2\dfrac{\mathrm{A \ - \ B}}{2}

Additional formulae derived from the above:

S.No. Formulae Expansion
1 sin 2A 2 sin A cos A
2 cos 2A cos2^2 A - sin2^2 A
= 1 – 2 sin
2^2 A
= 2 cos
2^2 A - 1
3 tan 2A 2 tan A1tan2A\dfrac{2 \ \mathrm{tan \ A}}{1 - \tan^{2} \mathrm{A}}
4 sin 3A 3 sinA4 sin3 A3 \ \sin \mathrm{A} - 4 \ \sin^{3} \ \mathrm{A}
5 cos 3A 4 cos3A3 cosA4 \ \cos^{3} \mathrm{A} - 3 \ \cos \mathrm{A}
6 tan 3A 3 tanAtan3A13tan3A\dfrac{3 \ \tan \mathrm{A} - \tan^{3} \mathrm{A}}{1 - 3 \tan^{3} \mathrm{A}}

Example 4

Find the following
(i) tan 75°75\degree       (ii) sin 15°15\degree + sin 75°75\degree

Solution

(i)
tan75°=tan(45°+30°)=tan30°+tan45°1tan30°tan45°=(13)+11(13)×1=3+131\tan75\degree = \tan(45\degree + 30\degree) = \dfrac{\tan30\degree + \tan45\degree}{1 - \tan30\degree \tan45\degree} = \dfrac{(\frac{1}{\sqrt{3}}) + 1}{1 - (\frac{1}{\sqrt{3}}) \times 1} = \dfrac{\sqrt{3} + 1}{\sqrt{3} - 1}

=
3+131×3+13+1=(3+1)2(3)212=4+232=2+3\dfrac{\sqrt{3} + 1}{\sqrt{3} - 1} \times \dfrac{\sqrt{3} + 1}{\sqrt{3} + 1} = \dfrac{(\sqrt{3} + 1)^{2}}{(\sqrt{3})^{2} - 1^{2}} = \dfrac{4 + 2\sqrt{3}}{2} = 2 + \sqrt{3}

(ii)
sin15°+sin75°=sin(45°30°)+sin(45°+30°)\sin 15\degree + \sin 75 \degree = \sin (45\degree - 30\degree) + \sin(45\degree + 30\degree)

=
sin45° cos30°cos45° sin30°+sin45° cos30°+cos45°sin30°\sin 45\degree \ \cos30\degree - \cos45\degree \ \sin 30\degree + \sin 45\degree \ \cos30\degree + \cos45\degree \sin 30\degree

=
2(sin45°cos30°)=2(12×32)=32=322(\sin 45\degree \cos 30\degree) = 2 \left(\dfrac{1}{\sqrt{2}} \times \dfrac{\sqrt{3}}{2} \right) = \dfrac{\sqrt{3}}{\sqrt{2}} = \sqrt{\dfrac{3}{2}}

Answer: (i)
2+32 + \sqrt{3} (ii) 32\sqrt{\dfrac{3}{2}}

Example 5

cosec10°3sec10°=\cosec 10\degree - \sqrt{3}\sec 10\degree =

(1) 1      (2) 2     (3)
3\sqrt{3}     (4) 4

Solution

cosec10°3sec10°=1sin10°3cos10°=cos10°3sin10°sin10°cos10°\cosec 10\degree - \sqrt{3}\sec 10\degree = \dfrac{1}{\sin 10\degree} - \dfrac{\sqrt{3}}{\cos 10 \degree} = \dfrac{\cos 10\degree - \sqrt{3} \sin 10\degree}{\sin 10\degree \cos 10\degree}

=
2×(12×cos10°32×sin10°)×22sin10° cos10°2 \times \left( \dfrac{1}{2} \times \cos10\degree - \dfrac{\sqrt{3}}{2} \times \sin10\degree \right) \times \dfrac{2}{2 \sin10\degree \ \cos10\degree}

=
2×(sin30° cos10°cos30° sin10°)×2sin20°2 \times (\sin 30\degree \ \cos10\degree - \cos 30\degree \ \sin10\degree) \times \dfrac{2}{\sin20\degree}

=
2×sin(30°10°)×2sin20°=4×sin20°sin20°=42 \times \sin (30\degree - 10\degree) \times \dfrac{2}{\sin20\degree} = 4 \times \dfrac{\sin 20\degree}{\sin 20\degree} = 4

Answer: (4) 4


Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock