+91 9600 121 800

Plans

Dashboard

Daily & Speed

Quant

Verbal

DILR

Compete

Free Stuff

calendarBack
Quant

/

Numbers

/

Number Systems

Number Systems

MODULES

Roman Numerals
Conversion to Base 10
Conversion to other Bases
Non-Decimal Bases
Arithmetic Operations
Special Types
Past Questions

CONCEPTS & CHEATSHEET

Concept Revision Video

SPEED CONCEPTS

Number Systems 1
-/10

PRACTICE

Number Systems : Level 1
Number Systems : Level 2
Number Systems : Level 3
ALL MODULES

CAT 2025 Lesson : Number Systems - Conversion to Base 10

bookmarked

2. Positional Number system

As discussed in the Number Theory lesson, we follow a positional number system with base
10\bm{10}10. This simply means there are 101010 distinct digits in the system ⇒ 0,1,2,3,4,5,6,7,8,9.0, 1, 2, 3, 4, 5, 6, 7, 8, 9.0,1,2,3,4,5,6,7,8,9.

In this positional number system, the position of a digit has a certain value called the Place Value. The actual value of the digit in that position is called Face Value.

In the number
34.25\bm{34.25}34.25 of the base 101010 number system, the face values are the digits 333, 444, 222 and 555, while 101,10−110^{1}, 10^{-1}101,10−1 and 10−210^{-2}10−2 are their respective place values.

When we multiply the face values with their respective place values and add them up, we get the value of the number.

34.25=(3×101)+(4×100)+(2×10−1)+(5×10−2)34.25 = (3 \times 10^{1}) + (4 \times 10^{0}) + (2 \times 10^{-1}) + (5 \times 10^{-2})34.25=(3×101)+(4×100)+(2×10−1)+(5×10−2)

The base can be changed to any integer greater than
111. The following rules, however, continue to apply
1) A base b number system uses b digits.
2) The place values to the left of the point are
b0,b1,b2,...b^{0}, b^{1}, b^{2}, ...b0,b1,b2,...
3) The place values to the right of the point are
b−1,b−2,b−3,...b^{-1}, b^{-2}, b^{-3}, ...b−1,b−2,b−3,...

∴ A system with base
666 has 666 distinct digits, generally represented using 0,1,2,3,4,5.0, 1, 2, 3, 4, 5.0,1,2,3,4,5.
(Note that
101010 is not a digit in the base 101010 system. Likewise, 666 is not a digit in the base 666 system.)

When we write a number in a base other than 101010, we usually express it as (number)base(number)_\text{base}(number)base​. Value of 34.2534.2534.25 in the base 666 number system is as follows

(34.25)6=(3×61)+(4×60)+(2×6−1)+(5×6−2)(34.25)_{6} = (3 \times 6^{1}) + (4 \times 6^{0}) + (2 \times 6^{-1}) + (5 \times 6^{-2})(34.25)6​=(3×61)+(4×60)+(2×6−1)+(5×6−2)

For number systems with base greater than
101010, additional symbols need to be created for digits. We typically use the letters of the alphabet, a,b,ca, b, ca,b,c, etc. for the digits 10,11,1210, 11, 1210,11,12, etc.

∴ In the base
121212 number system, the 121212 digits used will be 0,1,2,3,4,5,6,7,8,9,a,b.0, 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b. 0,1,2,3,4,5,6,7,8,9,a,b.

3. Conversion to Decimal System

We have been trained to add, subtract, multiply or divide in the base
101010 number system. Therefore, while adding or multiplying numbers, we automatically add or multiply in the base 101010 number system.

∴ To convert a number from base b to base
10\bm{10}10, we multiply the face values with the respective place values and add.

So, (243)6=(2×62)+(4×61)+(3×60)(243)_{6} = (2 \times 6^{2}) + (4 \times 6^{1}) + (3 \times 6^{0})(243)6​=(2×62)+(4×61)+(3×60)
=72+24+3= 72 + 24 + 3=72+24+3
=99= 99=99

∴
(243)6=(99)10\bm{(243)_{6}} = \bm{(99)_{10}}(243)6​=(99)10​

A number in base
666 can only have digits from 0,1,2,3,40, 1, 2, 3, 40,1,2,3,4 and 555. But, when we convert (243)6(243)_{6}(243)6​ to base 101010, the expansion contains digits 666, 777 and 999. These digits are of the Base 101010 system. Therefore, the conversion automatically happens when we expand and write.

Example 2

(153)8+(136)14=(x)10(153)_{8} + (136)_{14} = (x)_{10}(153)8​+(136)14​=(x)10​ . Then, x=x =x=

Solution

(153)8=(1×82)+(5×8)+3=107(153)_{8} = (1 \times 8^{2}) + (5 \times 8) + 3 = 107(153)8​=(1×82)+(5×8)+3=107

(136)14=(1×142)+(3×14)+6=244(136)_{14} = (1 \times 14^{2}) + (3 \times 14) + 6 = 244(136)14​=(1×142)+(3×14)+6=244

In the decimal system,
(153)8+(136)14=107+244(153)_{8} + (136)_{14} = 107 + 244(153)8​+(136)14​=107+244
=(351)10= (351)_{10}=(351)10​

Answer:
351351351


3.1 Conversion to decimals after the point

Note that digits to the right of the point assume negative powers of the base. For example, if the base is
222 and the number is 101.11101.11101.11, the value in the decimal system is (1×22)+(0×21)+(1×20)+(1×2−1)+(1×2−2)(1 \times 2^{2}) + (0 \times 2^{1}) + (1 \times 2^{0}) + (1 \times 2^{-1}) + (1 \times 2^{-2})(1×22)+(0×21)+(1×20)+(1×2−1)+(1×2−2) =4+0+1+12+14=5.75= 4 + 0 + 1 + \dfrac{1}{2} + \dfrac{1}{4} = 5.75=4+0+1+21​+41​=5.75

Example 3

What is the decimal equivalent of (12.24)5(12.24)_{5}(12.24)5​?

Solution

(12.24)5=(1×51)+(2×50)+(2×5−1+(4×5−2)(12.24)_{5} = (1 \times 5^{1}) + (2 \times 5^{0}) + (2 \times 5^{-1} + (4 \times 5^{-2})(12.24)5​=(1×51)+(2×50)+(2×5−1+(4×5−2)

=5+2+25+425= 5 + 2 + \dfrac{2}{5} + \dfrac{4}{25}=5+2+52​+254​

=5+2+0.4+0.16=7.56= 5 + 2 + 0.4 + 0.16 = 7.56=5+2+0.4+0.16=7.56

Answer:
7.567.567.56


Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock