4. Formulae and Powers to remember
4.1 Algebraic Expansions
The binomial expansion formula is provided below.
(a+b)n= nC0anb0+ nC1an−1b1+ nC2an−2b2+...+ nCna0bn
Note: In the formula above, nCr=r! (n−r)!n!. This is detailed in Permutations and Combinations lesson.
It is easy to remember this if you observe the following.
1) The first term is nC0anb0, where r=0.
2) For every subsequent term, r increases by 1, power of a reduces by 1 and power of b increases by 1.
3) ∴ the last term is nCna0bn
4) Note that if the power is n, there will be n+1 terms.
For instance, to derive the expansion for (a+b)2, we substitute n=2 in the formula above and get the following.
(a+b)2= 2C0a2b0+ 2C1a1b1+ 2C2a0b2
⇒ (a+b)2=a2+2ab+b2
Algebraic Formulae to Memorise
| Expression |
Expansion |
| (a+b)n |
nC0anb0+ nC1an−1b1+...+ nCna0bn |
| an−bn |
(a−b)(an−1+an−2b+...+bn−1) |
| (a+b)2 |
a2+2ab+b2 |
| (a−b)2 |
a2−2ab+b2 |
| a2−b2 |
(a+b)(a−b) |
| a2+b2 |
(a+b)2−2ab; or (a−b)2+2ab
|
| (a+b)3 |
a3+3ab(a+b)+b3; or a3+3a2b+3ab2+b3 |
| (a−b)3 |
a3−3ab(a−b)−b3; or a3−3a2b+3ab2−b3 |
| a3+b3 |
(a+b)(a2−ab+b2); or (a+b)3−3ab(a+b) |
| a3−b3 |
(a−b)(a2+ab+b2); or (a−b)3+3ab(a−b) |
| (a+b+c)2 |
a2+b2+c2+2ab+2bc+2ca |
| a3+b3+c3−3abc |
(a+b+c)(a2+b2+c2−ab−bc−ca) |
If a+b+c=0, then a3+b3+c3 = |
3abc |
The following are to be noted as well.
1)
(an+bn) is divisible by (a+b) if n is odd.
2) (an−bn) is divisible by (a+b) if n is even.
Example 13
The remainder, when (1523+2323) is divided by 19, is:
[CAT 2004]
(1) 4
(2) 15
(3) 0
(4) 18
Solution
(an+bn) is divisible by (a+b) if n is odd.
∴(1523+2323) is divisible by 15+23=38
∴(1523+2323) will perfectly divide 19 and leave a remainder of 0.
Answer: (3) 0
Example 14
If R = 3064+29643065−2965, then:
[CAT 2005]
(1) 0 < R < 0.1
(2) 0.1 < R < 0.5
(3) 0.5 < R < 1.0
(4) R > 1.0
Solution
an−bn=(a−b)(an−1+an−2b+...+bn−1)
3065−2965=(30−29)(3064+3063×29+...+30×2963+2964)
= (3064+2964)+(3063×29+...+30×2963)
∴ R = 3064+2964(3064+2964)+(3063×29+...+30×2963)
=1+3064+2964(3063×29+...+30×2963)>1
Answer: (4) R > 1.0
Additionally, to improve your speed in answering questions, it is best if you memorise the following
(1) Multiplication Tables from
1 to 15; and
(2) Squares and higher powers listed below provided in 4.2 and 4.3.
4.2 Squares
| 12=1 |
92=81 |
172=289 |
252=625 |
| 22=4 |
102=100 |
182=324 |
262=676 |
| 32=9 |
112=121 |
192=361 |
272=729 |
| 42=16 |
122=144 |
202=400 |
282=784 |
| 52=25 |
132=169 |
212=441 |
292=841 |
| 62=36 |
142=196 |
222=484 |
302=900 |
| 72=49 |
152=225 |
232=529 |
312=961 |
| 82=64 |
162=256 |
242=576 |
322=1024 |
4.3 Higher Powers
| 21=2 |
22=4 |
23=8 |
24=16 |
| 25=32 |
26=64 |
27=128 |
28=256 |
| 29=512 |
210=1024 |
211=2048 |
212=4096 |
|
|
|
|
| 31=3 |
32=9 |
33=27 |
34=81 |
| 35=243 |
36=729 |
37=2187 |
38=6561 |
| |
|
|
|
| 41=4 |
42=16 |
43=64 |
44=256 |
| 45=1024 |
46=4096 |
|
|
| |
|
|
|
| 51=5 |
52=25 |
53=125 |
54=625 |
| 55=3125 |
56=15625 |
|
|
| |
|
|
|
| 61=6 |
62=36 |
63=216 |
64=1296 |
| |
|
|
|
| 71=7 |
72=49 |
73=343 |
74=2401 |
| |
|
|
|
| 81=8 |
82=64 |
83=512 |
84=4096 |
| |
|
|
|
| 91=9 |
92=81 |
93=729 |
94=6561 |
| |
|
|
|
| 111=11 |
112=121 |
113=1331 |
114=14641 |
| |
|
|
|
| 121=12 |
122=144 |
123=1728 |
|