+91 9600 121 800

Plans

Dashboard

Daily & Speed

Quant

Verbal

DILR

Compete

Free Stuff

calendarBack
Quant

/

Algebra

/

Inequalities

Learn

MODULES

bookmarked
Basics of Inequalities
Quadratic Inequalities
Basics of Modulus
Multiple Modulus Functions
Modulus on a Number Line
Sum or Product is Constant
Max & Min for Range & Substitution
Past Questions
concepts-cheatsheet-1660549090

SPEED CONCEPTS

Inequalities 1
-/10
Inequalities 2
-/10

PRACTICE

Inequalities : Level 1
Inequalities : Level 2
Inequalities : Level 3
ALL MODULES

CAT 2025 Lesson : Inequalities - Basics of Modulus

bookmarked

5. Inequalities with Modulus

You would have learnt in school that a modulus function (also called absolute value) provides the same number if it is positive or equals 0, and provides the positive value of a number if it is negative. Therefore, the modulus function always provides a non-negative number (0 or more).

The following is the definition of the modulus function of
xxx.

∣x∣=x| x | = \bm{x}∣x∣=x, if x≥0x \ge 0x≥0; and
     
=−x = \bm{-x}=−x, if x<0x \lt 0x<0

Where k is a constant,
if
∣x∣<k| x | \lt k∣x∣<k, then −k<x<k\bm{-k \lt x \lt k}−k<x<k
if
∣x∣>k| x | \gt k∣x∣>k, then x<−k\bm{x \lt -k}x<−k or x>k\bm{x \gt k}x>k

Key properties of modulus involving 2 variables are as follows.
1)
∣x+y∣≤∣x∣+∣y∣| x + y | \le | x | + | y |∣x+y∣≤∣x∣+∣y∣
2)
∣x+y∣≥∣x∣−∣y∣| x + y | \ge | x | - | y |∣x+y∣≥∣x∣−∣y∣
3)
∣x−y∣≥∣x∣−∣y∣| x - y | \ge | x | - | y |∣x−y∣≥∣x∣−∣y∣

Example 7

Where xxx is an integer, how many values of xxx satisfy ∣2x+5∣<10| 2x + 5 | \lt 10∣2x+5∣<10?

Solution

Outlined initially is the standard method that is used to solve modulus functions. The alternative method is useful when the modulus is less than a constant (which would then provide a range).

Case 1: If 2x+5≥02x + 5 \ge 02x+5≥0 (i.e. x≥−2.5\bm{x \ge -2.5}x≥−2.5),

then
2x+5<102x + 5 \lt 102x+5<10

⇒
x<2.5\bm{x \lt 2.5}x<2.5

The conditions in bold above when merged provides
−2.5<x<2.5-2.5 \lt x \lt 2.5−2.5<x<2.5.
5 integers from –2 to 2 satisfy
xxx for this condition.

Case 2: If
2x+5<02x + 5 \lt 02x+5<0 (i.e. x<−2.5\bm{x < -2.5}x<−2.5),

then
−(2x+5)<10-(2x + 5) \lt 10−(2x+5)<10

⇒
2x+5>−102x + 5 \gt -102x+5>−10 ⇒ x>−7.5\bm{x \gt -7.5}x>−7.5

The conditions in bold above when merged provides
−7.5<x<−2.5-7.5 \lt x \lt -2.5−7.5<x<−2.5.
5 integers from –7 to –3 satisfy
xxx for this condition.

Therefore, there is a total of
5+5=105 + 5 = \bm{10}5+5=10 integral values that xxx can take.

Alternatively (Recommended)

If
∣x∣<k| x | \lt k∣x∣<k, then −k<x<k\bm{-k \lt x \lt k}−k<x<k

∴
∣2x+5∣<10| 2x + 5 | \lt 10∣2x+5∣<10

⇒
−10<2x+5<10-10 \lt 2x + 5 \lt 10−10<2x+5<10

Now, start moving constants directly to the two extremes of this combined inequality.
⇒
−10−5<2x<10−5-10-5 \lt 2x \lt 10-5−10−5<2x<10−5

⇒
−15<2x<5-15 \lt 2x \lt 5−15<2x<5

⇒
−152<x<52\dfrac{-15}{2} \lt x \lt \dfrac{5}{2}2−15​<x<25​

⇒
−7.5<x<2.5\bm{-7.5 \lt x \lt 2.5}−7.5<x<2.5

Integers between –
777 and 222 (both inclusive) are the values that xxx can take.
Number of integers between
xxx and yyy both inclusive = y−x+1y - x + 1y−x+1
∴ Number of integers that satisfy the inequality =
2−(−7)+1=102 - (-7) + 1 = \bm{10}2−(−7)+1=10

Answer:
101010


Example 8

What is the range of xxx in ∣∣x−1∣−1∣<3||x-1|-1| \lt 3∣∣x−1∣−1∣<3

Solution

∣∣x−1∣−1∣<3||x-1|-1| \lt 3∣∣x−1∣−1∣<3

⇒
−3<∣x−1∣−1<3-3 \lt |x-1|-1 \lt 3−3<∣x−1∣−1<3

⇒
−2<∣x−1∣<4-2 \lt |x-1| \lt 4−2<∣x−1∣<4

As modulus of
∣x−1∣≥0|x-1| \ge 0∣x−1∣≥0, we can ignore the lower limit of –2–2–2.

⇒
∣x−1∣<4|x-1| \lt 4∣x−1∣<4

⇒
−4<x−1<4-4 \lt x-1 \lt 4 −4<x−1<4

⇒
−3<x<5 -3 \lt x \lt 5 −3<x<5

Answer:
−3<x<5-3 \lt x \lt 5−3<x<5


Want to read the full content

Unlock this content & enjoy all the features of the platform

Subscribe Now arrow-right
videovideo-lock